1
|
Doll PW, Doll K, Winkel A, Thelen R, Ahrens R, Stiesch M, Guber AE. Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars. ACS OMEGA 2022; 7:17620-17631. [PMID: 35664577 PMCID: PMC9161423 DOI: 10.1021/acsomega.2c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive Staphylococcus aureus and Gram-negative Aggregatibacter actinomycetemcomitans. As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell's elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell.
Collapse
Affiliation(s)
- Patrick W. Doll
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katharina Doll
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andreas Winkel
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Richard Thelen
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Ahrens
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Meike Stiesch
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andreas E. Guber
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases. Biomedicines 2021; 9:biomedicines9101435. [PMID: 34680553 PMCID: PMC8533418 DOI: 10.3390/biomedicines9101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogenic oral biofilms are now recognized as a key virulence factor in many microorganisms that cause the heavy burden of oral infectious diseases. Recently, new investigations in the nanotechnology field have propelled the development of novel biomaterials and approaches to control bacterial biofilms, either independently or in combination with other substances such as drugs, bioactive molecules, and photosensitizers used in antimicrobial photodynamic therapy (aPDT) to target different cells. Moreover, nanoparticles (NPs) showed some interesting capacity to reverse microbial dysbiosis, which is a major problem in oral biofilm formation. This review provides a perspective on oral bacterial biofilms targeted with NP-mediated treatment approaches. The first section aims to investigate the effect of NPs targeting oral bacterial biofilms. The second part of this review focuses on the application of NPs in aPDT and drug delivery systems.
Collapse
|
3
|
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:85-96. [PMID: 34188729 PMCID: PMC8215285 DOI: 10.1016/j.jdsr.2021.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion to the surface of dental materials play a significant role in infections. The factors that govern microbial attachment involves different types of physical-chemical interactions and biological processes. Studying bacterial adhesion makes it possible to understand the mechanisms involved in attachment and helps in the search for technologies that promote antibacterial surfaces.
Bacterial attachment to biomaterials is of great interest to the medical and dental field due to its impact on dental implants, dental prostheses, and others, leading to the need to introduce methods for biofilm control and mitigation of infections. Biofilm adhesion is a multifactorial process and involves characteristics relevant to the bacterial cell as well as biological, chemical, and physical properties relative to the surface of biomaterials. Bacteria encountered different environmental conditions during their growth and developed interspecies communication strategies, as well as various mechanisms to detect the environment and facilitate survival, such as chemical sensors or physical detection mechanisms. However, the factors that govern microbial attachment to surfaces are not yet fully understood. In order to understand how bacteria interact with surfaces, as well as to characterize the physical-chemical properties of bacteria adhesins, and to determine their interrelation with the adhesion to the substrate, in recent years new techniques of atomic force microscopy (AFM) have been developed and helped by providing quantitative results. Thus, the purpose of this review is to gather current studies about the factors that regulate microbial adhesion to surfaces in order to offer a guide to studies to obtain technologies that provide an antimicrobial surface.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa C Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Raj A, Dhandia N, Balani K. Adhesin Protein Interaction of Staphylococcus Aureus Bacteria with Various Biomaterial Surfaces. ACS Biomater Sci Eng 2020; 6:6161-6172. [PMID: 33449661 DOI: 10.1021/acsbiomaterials.0c01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stage of adhesion during implant infection is dominated by interactions of the surface proteins of the bacteria with the substrate atoms. In the current work, molecular dynamics (MD) simulations have been utilized to investigate the mechanics of the associated adhesion forces of bacteria on different surfaces. The unfolding of these adhesion proteins is investigated in order to map these events to earlier experiments on bacterial de-adhesion (using single cell force spectroscopy) with real-life substrates (i.e., ultrahigh molecular weight polyethylene, hydroxyapatite, Ti alloy, and stainless steel). The adhesion of Staphylococcus aureus adhesin (i.e., SpA) is observed by altering their orientation on the silica substrate through MD simulations, followed by capturing unfolding events of three adhesins (SpA, ClfA, and SraP) of variable lengths possessing different secondary structures. The output long-range and short-range interaction forces and consequent visualization of changes in the secondary structure of protein segments are presented during the de-adhesion process. Simulation results are correlated with extracted short-range forces (using Poisson regression) from real-life bacterial de-adhesion experiments. Insights into such protein-substrate interactions may allow for engineering of biomaterials and designing of nonbiofouling surfaces.
Collapse
Affiliation(s)
- Arindam Raj
- Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur208016, India.,Mechanical Engineering and Materials Science, Yale University, New Haven06520-8292, Connecticut, United States
| | - Neeraj Dhandia
- Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur208016, India
| | - Kantesh Balani
- Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur208016, India
| |
Collapse
|
5
|
Doll K, Yang I, Fadeeva E, Kommerein N, Szafrański SP, Bei der Wieden G, Greuling A, Winkel A, Chichkov BN, Stumpp NS, Stiesch M. Liquid-Infused Structured Titanium Surfaces: Antiadhesive Mechanism to Repel Streptococcus oralis Biofilms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23026-23038. [PMID: 31173692 DOI: 10.1021/acsami.9b06817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To combat implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, the antiadhesive properties of titanium surface functionalization based on the "slippery liquid-infused porous surfaces" (SLIPS) principle were demonstrated and the underlying mechanism was analyzed. The immobilized liquid layer was stable over 13 days of continuous flow in an oral flow chamber system. With increasing flow rates, the surface exhibited a significant reduction in attached biofilm of both the oral initial colonizer Streptococcus oralis and an oral multispecies biofilm composed of S. oralis, Actinomyces naeslundii, Veillonella dispar, and Porphyromonas gingivalis. Using single cell force spectroscopy, reduced S. oralis adhesion forces on the lubricant layer could be measured. Gene expression patterns in biofilms on SLIPS, on control surfaces, and expression patterns of planktonic cultures were also compared. For this purpose, the genome of S. oralis strain ATCC 9811 was sequenced using PacBio Sequel technology. Even though biofilm cells showed clear changes in gene expression compared to planktonic cells, no differences could be detected between bacteria on SLIPS and on control surfaces. Therefore, it can be concluded that the ability of liquid-infused titanium to repel S. oralis biofilms is mainly due to weakened bacterial adhesion to the underlying liquid interface.
Collapse
Affiliation(s)
- Katharina Doll
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Ines Yang
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Elena Fadeeva
- Institute of Quantum Optics , Leibniz University of Hannover , Welfengarten 1 , 30167 Hannover , Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Gesa Bei der Wieden
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Boris N Chichkov
- Institute of Quantum Optics , Leibniz University of Hannover , Welfengarten 1 , 30167 Hannover , Germany
| | - Nico S Stumpp
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| |
Collapse
|