1
|
Kanth Kadiyala N, Mandal BK, Kumar Reddy LV, Sen D, Tammina SK, Barnes CH, Alvarez MÑ, De Los Santos Valladares L, Kotakadi VS, Gaddam SA. One-Pot Solvothermal Synthetic Route of a Zinc Oxide Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite: An Advanced Material with a Novel Anticancer Theranostic Approach. ACS OMEGA 2023; 8:46763-46776. [PMID: 38107885 PMCID: PMC10720013 DOI: 10.1021/acsomega.3c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
This study focuses on a one-pot solvothermal synthetic route for the preparation of uniformly decorated zinc oxide nanoparticles on the surface of reduced graphene oxide (rGO/ZnO-NC) by using Andrographis paniculata leaf aqueous extract as an eco-friendly reducing agent. After characterizing the samples by different physical and chemical techniques, the anticancer activity of the synthesized rGO/ZnO-NC was examined on two human cancerous cell lines (HCT116 and A549) and one normal cell line (hMSCs). The MTT assays revealed that rGO/ZnO-NC exhibited dose-dependent cytotoxicity at a maximum concentration range of 10 ppm and the viability of the cells was drastically decreased to 95-96%. Measurement of reactive oxygen species (ROS) generation and Annexin V-FTIC staining assay revealed that rGO/ZnO-NC induced apoptosis in HCT116 and A549 cell lines. Thus, this study shows that the green-synthesized rGO/ZnO-NC has great potential in developing an efficacious novel therapeutic agent for cancers.
Collapse
Affiliation(s)
- Nalinee Kanth Kadiyala
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Badal Kumar Mandal
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - L. Vinod Kumar Reddy
- Cellular
and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular
and Molecular Theranostics, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Dwaipayan Sen
- Cellular
and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular
and Molecular Theranostics, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Sai Kumar Tammina
- Trace
Elements Speciation Research Laboratory, Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology (VIT), Vellore 632014, India
| | - Crispin H.W. Barnes
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K.
| | - Manuel Ñique Alvarez
- Universidad
Nacional de Cañete, Jr. San Agustin 124, San
Vicente de Cañete15701, Lima, Peru
| | - Luis De Los Santos Valladares
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE, U.K.
- Laboratorio
de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap Postal 14-0149, Lima, Peru
| | | | | |
Collapse
|
2
|
Ge Q, Zhou C, Zang C, Li C, Hong H, Wang K, Chen L, Zhu H, Wang A. MPZL1 suppresses the cancer stem-like properties of lung cancer through β-catenin/TCF4 signaling. Funct Integr Genomics 2023; 23:304. [PMID: 37726580 DOI: 10.1007/s10142-023-01232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
This study was designed to explore the influence of myelin protein zero-like protein 1 (MPZL1) on the stem-like properties of cancer cells and the underlying mechanism in lung adenocarcinoma. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to evaluate mRNA expression level. CCK8, wound healing, and transwell assays were applied to assess cell proliferation, migration, and invasion. Tumorsphere-formation assay was utilized to assess cancer stem cell-like properties. LF3 was used to block the β-catenin/Transcription factor 4 (TCF-4) signaling. Xenograft nude mouse model was conducted; tumor weight and volume were recorded. Western blot assay was utilized to detect the expression levels of CD44, CD133, β-catenin, TCF-4, and MPZL1. Following MPZL1 knockdown, the mRNA expression levels of MPZL1, β-catenin, and TCF-4 were inhibited, while the mRNA expression levels of the above genes were increased after the MPZL1 overexpression. MPZL1 knockdown suppressed cell proliferation, migration, and invasion, reduced the tumorsphere-formation capacity, and restrained the expression levels of CD44 and CD133. However, MPZL1 overexpression promoted the cell proliferation, migration, and invasion, enhanced the tumorsphere-formation capacity, and increased the expression levels of CD44 and CD133. Interestingly, LF3 treatment partially revised the effect of MPZL1 overexpression. These findings were further corroborated by in vivo experiments. We concluded that MPZL1 could suppress the lung adenocarcinoma cells' proliferation, migration, invasion, and lung cancer stem cells characteristics. The underlying mechanism is involved in the activation of β-catenin/TCF-4 signaling.
Collapse
Affiliation(s)
- Qiao Ge
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chao Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zang
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Haining Hong
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Kangwu Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Liwei Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Haonan Zhu
- Department of Thoracic Surgery, Fu Yang People's Hospital, Fuyang, Anhui, China.
| | - Ansheng Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Alangari A, Mateen A, Alqahtani MS, Shahid M, Syed R, Shaik MR, Khan M, Adil SF, Kuniyil M. Antimicrobial, anticancer, and biofilm inhibition studies of highly reduced graphene oxide (HRG): In vitro and in silico analysis. Front Bioeng Biotechnol 2023; 11:1149588. [PMID: 37025362 PMCID: PMC10071309 DOI: 10.3389/fbioe.2023.1149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Bacterial infections and cancers may cause various acute or chronic diseases, which have become serious global health issues. This requires suitable alternatives involving novel and efficient materials to replace ineffective existing therapies. In this regard, graphene composites are being continuously explored for a variety of purposes, including biomedical applications, due to their remarkable properties. Methods: Herein, we explore, in-vitro, the different biological properties of highly reduced graphene oxide (HRG), including anti-cancer, anti-bacterial, and anti-biofilm properties. Furthermore, to analyze the interactions of graphene with proteins of microbes, in silico docking analysis was also carried out. To do this, HRG was prepared using graphene oxide as a precursor, which was further chemically reduced to obtain the final product. The as-prepared HRG was characterized using different types of microscopic and spectroscopic techniques. Results: The HRG revealed significant cytotoxic ability, using a dose-dependent anti-cell proliferation approach, which substantially killed human breast cancer cells (MCF-7) with IC50 of 29.51 ± 2.68 μg/mL. The HRG demonstrated efficient biological properties, i.e., even at low concentrations, HRG exhibited efficient anti-microbial properties against a variety of microorganisms. Among the different strains, Gram-positive bacteria, such as B. subtilis, MRSA, and S. aureus are more sensitive to HRG compared to Gram-negative bacteria. The bactericidal properties of HRG are almost similar to a commercially available effective antibiotic (ampicillin). To evaluate the efficacy of HRG against bacterial biofilms, Pseudomonas aeruginosa and MRSA were applied, and the results were compared with gentamycin and ampicillin, which are commonly applied standard antibiotics. Notably, HRG demonstrated high inhibition (94.23%) against P.aeruginosa, with lower MIC (50 μg/mL) and IC50 (26.53 μg/mL) values, whereas ampicillin and gentamicin showed similar inhibition (90.45% and 91.31% respectively) but much higher MIC and IC50 values. Conclusion: Therefore, these results reveal the excellent biopotential of HRG in different biomedical applications, including cancer therapy; antimicrobial activity, especially anti-biofilm activity; and other biomedicine-based therapies. Based on the molecular docking results of Binding energy, it is predicted that pelB protein and HRG would form the best stable docking complex, and high hydrogen and hydrophobic interactions between the pelB protein and HRG have been revealed. Therefore, we conclude that HRG could be used as an antibiofilm agent against P. aeruginosa infections.
Collapse
Affiliation(s)
- Abdulaziz Alangari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayesha Mateen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Adil SF, Shaik MR, Nasr FA, Alqahtani AS, Ahmed MZ, Qamar W, Kuniyil M, Almutairi A, Alwarthan A, Siddiqui MR, Hatshan MR, Khan M. Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells. ACS OMEGA 2021; 6:15147-15155. [PMID: 34151094 PMCID: PMC8210402 DOI: 10.1021/acsomega.1c01377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 05/27/2023]
Abstract
Graphene nanocomposites have gained significant interest in a variety of biological applications due to their unique properties. Herein, we have studied the apoptosis-inducing ability and anticancer properties of functionalized highly reduced graphene oxide (HRG) and gold nanoparticles (Au NPs)-based nanocomposites (AP-HRG-Au). Samples were prepared under facile conditions via simple stirring and ultrasonication. All the samples were tested for their anticancer properties against different human cancer cell lines including lung (A549), liver (HepG2), and breast (MCF-7) cancer cells using doxorubicin as a positive control. In order to enhance the solubility and bioavailability of the sample, HRG was functionalized with 1-aminopyrene (1-AP) as a stabilizing ligand. The ligand also facilitated the homogeneous growth of Au NPs on the surface of HRG by offering chemically specific binding sites. The synthesis of nanocomposites and the surface functionalization of HRG were confirmed by UV-Vis, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The structure and morphology of the as-prepared nanocomposites were established by high-resolution transmission electron microscopy. Because of the functionalization, the AP-HRG-Au nanocomposite exhibited enhanced physical stability and high dispersibility. A comparative anticancer study of pristine HRG, nonfunctionalized HRG-Au, and 1-AP-functionalized AP-HRG-Au nanocomposites revealed the enhanced apoptosis ability of functionalized nanocomposites compared to the nonfunctionalized sample, whereas the pristine HRG did not show any anticancer ability against all tested cell lines. Both HRG-Au and AP-HRG-Au have induced a concentration-dependent reduction in cell viability in all tested cell lines after 48 h of exposure, with a significantly higher response in MCF-7 cells compared to the remaining cells. Therefore, MCF-7 cells were selected to perform detailed investigations using apoptosis assay, cell cycle analysis, and reactive oxygen species measurements. These results suggest that AP-HRG-Au induces enhanced apoptosis in human breast cancer cells.
Collapse
Affiliation(s)
- Syed Farooq Adil
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahd A. Nasr
- Medicinal,
Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal,
Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z. Ahmed
- Medicinal,
Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mufsir Kuniyil
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adibah Almutairi
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafiq
H. Siddiqui
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Sasidharan S, Pottail L. Biogenic reduction of gold salt, graphene oxide using Americana periplaneta salivary exudates and their anti-bacterial and anti-cancer activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Chen Y, Feng X, Li L, Song K, Zhang L. Preparation and antitumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment. Drug Deliv 2021; 27:565-574. [PMID: 32252563 PMCID: PMC7178856 DOI: 10.1080/10717544.2020.1748760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hinokiflavone (HF) is a natural biflavonoid extracted from medicinal plants such as Selaginella tamariscina and Platycladus orientalis. HF plays a crucial role in the treatment of several cancers. However, its poor solubility, instability, and low bioavailability have limited its use. In this study, soluplus/d-α-tocopherol acid polyethylene glycol 1000 succinate (TPGS)/dequalinium (DQA) was applied to improve the solubilization efficiency and stability of HF. HF hybrid micelles were prepared via thin-film hydration method. The physicochemical properties of micelles, including particle size, zeta potential, encapsulation efficiency, drug loading, CMC value, and stability were investigated. The in vitro cytotoxicity assay showed that the cytotoxicity of the HF hybrid micelles was higher than that of free HF. In addition, the HF hybrid micelles improved anticancer efficacy and induced mitochondria-mediated apoptosis, which is associated with the high levels of ROS inducing decreased mitochondrial membrane potential, promoting apoptosis of tumor cells. Furthermore, in vivo tumor suppression, smaller tumor volume and increased expression of pro-apoptotic proteins were found in nude mice treated with HF hybrid micelles, suggesting that HF hybrid micelles had stronger tumor suppressive activity compared with free HF. In summary, HF hybrid micelles developed in this study enhanced antitumor effect, which may be a potential drug delivery system for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xue Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Luya Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Kewei Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
7
|
Nasiłowska B, Bogdanowicz Z, Hińcza K, Mierczyk Z, Góźdź S, Djas M, Kowiorski K, Bombalska A, Kowalik A. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results. MATERIALS 2020; 13:ma13194464. [PMID: 33050094 PMCID: PMC7578968 DOI: 10.3390/ma13194464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
This paper presents the results of the interaction of graphene oxide (GO) on MDA-MB-231 and SW-954 cancer cell lines. The tests were carried out in two variants. In the first one, GO was sprayed on a Petri dish and then, the cancer cell lines were cultured. In the second variant, the cells were covered with an aerosol containing GO. In both variants, cancer cell lines were incubated and tested every 24, 48, and 72 h. After each time period, cell viability and surface morphology were measured. The tests after 72 h showed that coating with GO aerosol caused a reduction in cell viability by 52.7% and 26.4% for MDA-MB-231 and SW-954 cancer cell lines, respectively, with respect to a reference sample (without the influence of GO aerosol). Tests where GO is a culture medium demonstrated a decrease in cell viability by approximately 4.3% compared to a reference sample for both considered cell lines.
Collapse
Affiliation(s)
- Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
- Correspondence:
| | - Zdzisław Bogdanowicz
- Faculty of Mechanical Engineering, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Kinga Hińcza
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland;
- Department of Prophylaxis and Cancer Epidemiology, Collegium Medicum, Jan Kochanowski University, Al. IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Małgorzata Djas
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Krystian Kowiorski
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
8
|
Salem ML, Gemeay A, Gomaa S, Aldubayan MA, Assy L. Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. JOURNAL OF NANOPARTICLE RESEARCH 2020. [DOI: 10.1007/s11051-020-04932-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Synthesis and Apoptotic Efficacy of Biosynthesized Silver Nanoparticles Using Acacia luciana Flower Extract in MCF-7 Breast Cancer Cells: Activation of Bak1 and Bclx for Cancer Therapy. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00753-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Assy L, Gemeay A, Gomaa S, Aldubayan MA, Salem ML. Impact of graphene oxide nano sheets loaded with chemotherapeutic drug on tumor cells. JOURNAL OF NANOPARTICLE RESEARCH 2020. [DOI: 10.1007/s11051-020-04790-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Interaction Analysis of Commercial Graphene Oxide Nanoparticles with Unicellular Systems and Biomolecules. Int J Mol Sci 2019; 21:ijms21010205. [PMID: 31892228 PMCID: PMC6982217 DOI: 10.3390/ijms21010205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast Saccharomyces cerevisiae and the bacteria Vibrio fischeri to the presence of different nanoparticle concentrations, and by studying the binding affinity of different microbial enzymes, like the α-l-rhamnosidase enzyme RhaB1 from the bacteria Lactobacillus plantarum and the AbG β-d-glucosidase from Agrobacterium sp. (strain ATCC 21400). An analysis of cytotoxicity on human epithelial cell line A549, S. cerevisiae (colony forming units, ROS induction, genotoxicity) and V. fischeri (luminescence inhibition) cells determined the potential of both nanoparticle types to damage the selected unicellular systems. Also, the protein binding affinity of the graphene derivatives at different oxidation levels was analyzed. The reported results highlight the variability that can exist in terms of toxicological potential and binding affinity depending on the target organism or protein and the selected nanomaterial.
Collapse
|
12
|
Li Y, Guo M, Lin Z, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180509. [PMID: 30564384 PMCID: PMC6281927 DOI: 10.1098/rsos.180509] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
The morbidity and mortality of hepatocellular carcinoma, the most common cancer, are increasing continuously worldwide. Galangin (Ga) has been demonstrated to possess anti-cancer effect, but the efficacy of Ga was limited by its low permeability and poor solubility. To develop aqueous formulation and improve the anti-cancer activity of Ga, surface decoration of functionalized selenium nanoparticles with Ga (Se@Ga) was synthesized in the present study. The aim of this study was to evaluate the anti-cancer effect of Se@Ga and the mechanism on HepG2 cells. Se@Ga-induced HepG2 cell apoptosis was confirmed by depletion of mitochondrial membrane potential, translocation of phosphatidylserine and caspase-3 activation. Furthermore, Se@Ga enhanced the anti-cancer activity of HepG2 cells through ROS-mediated AKT and p38 signalling pathways. In summary, these results suggest that Se@Ga might be potential candidate chemotherapy for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
13
|
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci 2018; 19:E3264. [PMID: 30347840 PMCID: PMC6214025 DOI: 10.3390/ijms19103264] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer represents a group of heterogeneous diseases characterized by uncontrolledgrowth and spread of abnormal cells, ultimately leading to death. Nanomedicine plays a significantrole in the development of nanodrugs, nanodevices, drug delivery systems and nanocarriers. Someof the major issues in the treatment of cancer are multidrug resistance (MDR), narrow therapeuticwindow and undesired side effects of available anticancer drugs and the limitations of anticancerdrugs. Several nanosystems being utilized for detection, diagnosis and treatment such as theranosticcarriers, liposomes, carbon nanotubes, quantum dots, polymeric micelles, dendrimers and metallicnanoparticles. However, nonbiodegradable nanoparticles causes high tissue accumulation andleads to toxicity. MDR is considered a major impediment to cancer treatment due to metastatictumors that develop resistance to chemotherapy. MDR contributes to the failure of chemotherapiesin various cancers, including breast, ovarian, lung, gastrointestinal and hematological malignancies.Moreover, the therapeutic efficiency of anticancer drugs or nanoparticles (NPs) used alone is lessthan that of the combination of NPs and anticancer drugs. Combination therapy has long beenadopted as the standard first-line treatment of several malignancies to improve the clinical outcome.Combination therapy with anticancer drugs has been shown to generally induce synergistic drugactions and deter the onset of drug resistance. Therefore, this review is designed to report andanalyze the recent progress made to address combination therapy using NPs and anticancer drugs.We first provide a comprehensive overview of the angiogenesis and of the different types of NPscurrently used in treatments of cancer; those emphasized in this review are liposomes, polymericNPs, polymeric micelles (PMs), dendrimers, carbon NPs, nanodiamond (ND), fullerenes, carbonnanotubes (CNTs), graphene oxide (GO), GO nanocomposites and metallic NPs used forcombination therapy with various anticancer agents. Nanotechnology has provided the convenienttools for combination therapy. However, for clinical translation, we need continued improvementsin the field of nanotechnology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
14
|
Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Sci Rep 2018; 8:12397. [PMID: 30120279 PMCID: PMC6098089 DOI: 10.1038/s41598-018-30317-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) are known mainly because of their bactericidal properties. Among the different types of synthesis, there is the biogenic synthesis, which allows the synergy between the nanocomposites and substances from the organism employed for the synthesis. This study describes the synthesis of AgNPs using infusion of roots (AgNpR) and extract (AgNpE) of the plant Althaea officinalis. After the synthesis through reduction of silver nitrate with compounds of A. officinalis, physico-chemical analyzes were performed by UV-Vis spectroscopy, nanoparticles tracking analysis (NTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM). Toxicity was evaluated through Allium cepa assay, comet test with cell lines, cell viability by mitochondrial activity and image cytometry and minimal inhibitory concentration on pathogenic microorganisms. Biochemical analyzes (CAT - catalase, GPx - glutathione peroxidase e GST - glutationa S-transferase) and genotoxicity evaluation in vivo on Zebrafish were also performed. AgNpE and AgNpR showed size of 157 ± 11 nm and 293 ± 12 nm, polydispersity of 0.47 ± 0.08 and 0.25 ± 0.01, and zeta potential of 20.4 ± 1.4 and 26.5 ± 1.2 mV, respectively. With regard to toxicity, the AgNpE were the most toxic when compared with AgNpR. Biochemical analyzes on fish showed increase of CAT activity in most of the organs, whereas GPx showed few changes and the activity of GST decreased. Also regarding to bactericidal activity, both nanoparticles were effective, however AgNpR showed greater activity. Althaea officinalis can be employed as reducing agent for the synthesis of silver nanoparticles, although it is necessary to consider its potential toxicity and ecotoxicity.
Collapse
|
15
|
Jaya Seema DM, Saifullah B, Selvanayagam M, Gothai S, Hussein MZ, Subbiah SK, Mohd Esa N, Arulselvan P. Designing of the Anticancer Nanocomposite with Sustained Release Properties by Using Graphene Oxide Nanocarrier with Phenethyl Isothiocyanate as Anticancer Agent. Pharmaceutics 2018; 10:pharmaceutics10030109. [PMID: 30071575 PMCID: PMC6161199 DOI: 10.3390/pharmaceutics10030109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/03/2023] Open
Abstract
In this study anticancer nanocomposite was designed using graphene oxide (GO) as nanocarrier and Phenethyl isothiocyanate (PEITC) as anticancer agent. The designed formulation was characterized in detailed with XRD, Raman, UV/Vis, FTIR, DLS and TEM etc. The designed anticancer nanocomposite showed much better anticancer activity against liver cancer HepG2 cells compared to the free drug PEITC and was also found to be nontoxic to the normal 3T3 cells. In vitro release of the drug from the anticancer nanocomposite formulation was found to be sustained in human body simulated phosphate buffer saline (PBS) solution of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). This study suggests that GO could be developed as an efficient drug carrier to conjugate with PEITC for pharmaceutical applications in cancer chemotherapies.
Collapse
Affiliation(s)
- Dasan Mary Jaya Seema
- Department of Advanced Zoology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600034, India.
| | - Bullo Saifullah
- Material Synthesis and characterization laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Henan-Macquarie Universities Joint Center for Biomedical Innovation, School of life Sciences, University of Henan Jin Ming Avenue, Kaifeng 475004, China.
| | - Mariadoss Selvanayagam
- Department of Advanced Zoology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600034, India.
- Loyola-ICAM college of engineering and Technology (LICET), Loyola Campus, Chennai 600034, India.
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Mohd Zobir Hussein
- Material Synthesis and characterization laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu 637408, India.
- Scigen Research and Innovation, Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, Tamilnadu 613403, India.
| |
Collapse
|
16
|
Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer. Bioinorg Chem Appl 2018; 2018:4924186. [PMID: 30057593 PMCID: PMC6051271 DOI: 10.1155/2018/4924186] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023] Open
Abstract
Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.
Collapse
|
17
|
Kang Y, Liu J, Wu J, Yin Q, Liang H, Chen A, Shao L. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int J Nanomedicine 2017; 12:5501-5510. [PMID: 28814866 PMCID: PMC5546784 DOI: 10.2147/ijn.s141032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Given the novel applications of graphene materials in biomedical and electronics industry, the health hazards of these particles have attracted extensive worldwide attention. Although many studies have been performed on graphene material-induced toxic effects, toxicological data for the effect of graphene materials on the nervous system are lacking. In this study, we focused on the biological effects of graphene oxide (GO) and reduced graphene oxide (rGO) materials on PC12 cells, a type of traditional neural cell line. We found that GO and rGO exerted significant toxic effects on PC12 cells in a dose- and time-dependent manner. Moreover, apoptosis appeared to be a response to toxicity. A potent increase in the number of PC12 cells at G0/G1 phase after GO and rGO exposure was detected by cell cycle analysis. We found that phosphorylation levels of ERK signaling molecules, which are related to cell cycle regulation and apoptosis, were significantly altered after GO and rGO exposure. In conclusion, our results show that GO has more potent toxic effects than rGO and that apoptosis and cell cycle arrest are the main toxicity responses to GO and rGO treatments, which are likely due to ERK pathway regulation.
Collapse
Affiliation(s)
- Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Yin
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Wu H, Zhong Q, Zhong R, Huang H, Xia Z, Ke Z, Zhang Z, Song J, Jia X. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int J Nanomedicine 2016; 11:6337-6352. [PMID: 27932881 PMCID: PMC5135287 DOI: 10.2147/ijn.s119839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-d-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS) and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC) cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell lines (A549 and PC-9). Cytotoxicity evaluations showed that the half-maximal inhibitory concentrations of free OA and OA-micelles were 36.8±4.8 and 20.9±3.7 μM, respectively, in A549 cells and 82.7±7.8 and 56.7±4.7 μM, respectively, in PC-9 cells. Apoptosis assays revealed that the apoptotic rate of OA-micelle-treated A549 and PC-9 cells was higher than that of cells treated with the same concentration of free OA. Wound healing and transwell assays showed that migration and invasion were significantly suppressed in OA-micelle-treated cells. Immunofluorescence and Western blot analyses confirmed that the epithelial–mesenchymal transition was reversed in OA-micelle-treated cells. Mixed micelles are a promising nano-drug delivery system for lung cancer treatment.
Collapse
Affiliation(s)
- Hao Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| | - Qingxiang Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Rongling Zhong
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Houcai Huang
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhi Xia
- Laboratory Animal Center, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Zhongcheng Ke
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, People's Republic of China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui
| |
Collapse
|
19
|
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Wang H, Xia H, Zhu B. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24385-93. [PMID: 27588566 DOI: 10.1021/acsami.6b06613] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As the therapeutic agent for antiviral applications, the clinical use of oseltamivir is limited with the appearance of drug-resistant viruses. It is important to explore novel anti-influenza drugs. The antiviral activity of silver nanoparticles (AgNPs) has attracted increasing attention in recent years and was a possibility to be employed as a biomedical intervention. Herein, we describe the synthesis of surface decoration of AgNPs by using oseltamivir (OTV) with antiviral properties and inhibition of drug resistance. Compared to silver and oseltamivir, oseltamivir-modified AgNPs (Ag@OTV) have remarkable inhibition against H1N1 infection, and less toxicity was found for MDCK cells by controlled-potential electrolysis (CPE), MTT, and transmission electron microscopy (TEM). Furthermore, Ag@OTV inhibited the activity of neuraminidase (NA) and hemagglutinin (HA) and then prevented the attachment of the H1N1 influenza virus to host cells. The investigations of the mechanism revealed that Ag@OTV could block H1N1 from infecting MDCK cells and prevent DNA fragmentation, chromatin condensation, and the activity of caspase-3. Ag@OTV remarkably inhibited the accumulation of reactive oxygen species (ROS) by the H1N1 virus and activation of AKT and p53 phosphorylation. Silver nanoparticle based codelivery of oseltamivir inhibits the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. These findings demonstrate that Ag@OTV is a novel promising efficient virucide for H1N1.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Liang Hua
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Chinese Academy of Sciences , Wuhan, P.R. China
| | - Huimin Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| |
Collapse
|