1
|
Ahmad G, Farhan Shams D, Anjum Khattak S, Khan W, Nadhman A. Decontamination of hexavalent chromium in aqueous systems through reduction with silver doped zinc oxide nanoparticles. MATERIALS LETTERS 2025; 379:137647. [DOI: 10.1016/j.matlet.2024.137647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
4
|
Ali HM, Karam K, Khan T, Wahab S, Ullah S, Sadiq M. Reactive oxygen species induced oxidative damage to DNA, lipids, and proteins of antibiotic-resistant bacteria by plant-based silver nanoparticles. 3 Biotech 2023; 13:414. [PMID: 38009163 PMCID: PMC10665289 DOI: 10.1007/s13205-023-03835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/25/2023] [Indexed: 11/28/2023] Open
Abstract
This study assesses the mechanism of action of plant-based silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. We compared AgNPs synthesized through Salvia moorcroftiana and Origanum vulgare extracts and their conjugates with the antibiotic Ceftriaxone for their capacity to cause oxidative damage through reactive oxygen species (ROS). We quantified ROS in the cells of two bacterial strains after treating them with all AgNP types and observed that AgNPs were most effective in K. pneumoniae as they resulted in the highest ChS1 count (44,675), while in P. aeruginosa, Cfx-AgNPs induced the highest levels of ROS with ChS1 count of 56,865. DNA analysis showed that both plant-based AgNPs (O-AgNPs = 0.192 and S-AgNPs = 0.152) were most effective in K. pneumoniae and S-AgNPs (abs = 0.174) and O-Cfx-AgNPs (abs = 0.261) in P. aeruginosa. We observed a significant increase in the levels of conjugated dienes (86.4 μM) and malondialdehyde (172.25 nM) in the bacterial strains after treatment with AgNPs, compared to the control (71.65 μM and 18.064 nM, respectively, in K. pneumoniae and P. aeruginosa). These results indicate lipid peroxidation. AgNPs also increased the levels of protein thiols (0.672 nM) compared to the control (0.441 nM) in K. pneumoniae, except for Chem-AgNPs (0.21 nM). These results suggest that plant-based AgNPs are more effective in oxidizing bacterial DNA, protein, and lipids than Chem-AgNPs. Furthermore, protein oxidation varied between AgNPs alone and AgNPs-antibiotic conjugates. The highest levels of protein thiols were found in the samples treated with O-Cfx-AgNPs (0.672 nM and 0.525 nM in K. pneumoniae and P. aeruginosa, respectively). The results demonstrated that AgNPs kill bacteria by altering bacterial macromolecules such as DNA, lipids, and proteins.
Collapse
Affiliation(s)
- Haroon Muhammad Ali
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Kashmala Karam
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Shahid Wahab
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
- School of Applied Biotechnology, College of Agriculture and Convergence Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Safi Ullah
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Sadiq
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, Pakistan
| |
Collapse
|
5
|
Benson S, Kiang A, Lochenie C, Lal N, Mohanan SMPC, Williams GOS, Dhaliwal K, Mills B, Vendrell M. Environmentally sensitive photosensitizers enable targeted photodynamic ablation of Gram-positive antibiotic resistant bacteria. Theranostics 2023; 13:3814-3825. [PMID: 37441588 PMCID: PMC10334829 DOI: 10.7150/thno.84187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial infections remain among the biggest challenges to human health, leading to high antibiotic usage, morbidity, hospitalizations, and accounting for approximately 8 million deaths worldwide every year. The overuse of antibiotics and paucity of antimicrobial innovation has led to antimicrobial resistant pathogens that threaten to reverse key advances of modern medicine. Photodynamic therapeutics can kill bacteria but there are few agents that can ablate pathogens with minimal off-target effects. Methods: We describe nitrobenzoselenadiazoles as some of the first environmentally sensitive organic photosensitizers, and their adaptation to produce theranostics with optical detection and light-controlled antimicrobial activity. We combined nitrobenzoselenadiazoles with bacteria-targeting moieties (i.e., glucose-6-phosphate, amoxicillin, vancomycin) producing environmentally sensitive photodynamic agents. Results: The labelled vancomycin conjugate was able to both visualize and eradicate multidrug resistant Gram-positive ESKAPE pathogens at nanomolar concentrations, including clinical isolates and those that form biofilms. Conclusion: Nitrobenzoselenadiazole conjugates are easily synthesized and display strong environment dependent ROS production. Due to their small size and non-invasive character, they unobtrusively label antimicrobial targeting moieties. We envisage that the simplicity and modularity of this chemical strategy will accelerate the rational design of new antimicrobial therapies for refractory bacterial infections.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alex Kiang
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Navita Lal
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Gareth O. S. Williams
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kevin Dhaliwal
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bethany Mills
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh EH16 4TJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Król G, Fortunka K, Majchrzak M, Piktel E, Paprocka P, Mańkowska A, Lesiak A, Karasiński M, Strzelecka A, Durnaś B, Bucki R. Metallic Nanoparticles and Core-Shell Nanosystems in the Treatment, Diagnosis, and Prevention of Parasitic Diseases. Pathogens 2023; 12:838. [PMID: 37375528 DOI: 10.3390/pathogens12060838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The usage of nanotechnology in the fight against parasitic diseases is in the early stages of development, but it brings hopes that this new field will provide a solution to target the early stages of parasitosis, compensate for the lack of vaccines for most parasitic diseases, and also provide new treatment options for diseases in which parasites show increased resistance to current drugs. The huge physicochemical diversity of nanomaterials developed so far, mainly for antibacterial and anti-cancer therapies, requires additional studies to determine their antiparasitic potential. When designing metallic nanoparticles (MeNPs) and specific nanosystems, such as complexes of MeNPs, with the shell of attached drugs, several physicochemical properties need to be considered. The most important are: size, shape, surface charge, type of surfactants that control their dispersion, and shell molecules that should assure specific molecular interaction with targeted molecules of parasites' cells. Therefore, it can be expected that the development of antiparasitic drugs using strategies provided by nanotechnology and the use of nanomaterials for diagnostic purposes will soon provide new and effective methods of antiparasitic therapy and effective diagnostic tools that will improve the prevention and reduce the morbidity and mortality caused by these diseases.
Collapse
Affiliation(s)
- Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Kamila Fortunka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Michał Majchrzak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Agata Lesiak
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Agnieszka Strzelecka
- Department of Public Health , Institute of Health Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
7
|
Bai L, Shi E, Li Y, Yang M, Li C, Li C, Wang Y, Wang Y. Oxyhemoglobin-Based Nanophotosensitizer for Specific and Synergistic Photothermal and Photodynamic Therapies against Porphyromonas gingivalis Oral Infection. ACS Biomater Sci Eng 2023; 9:485-497. [PMID: 36507692 DOI: 10.1021/acsbiomaterials.2c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are emerging alternative antibacterial approaches. However, due to the lack of selectivity of photosensitizers for pathogenic bacteria, these methods often show more or less different degrees of in vivo toxicity. Moreover, it is difficult for PDT to exert effective antibacterial effects against anaerobic infections due to the oxygen deficiency. As one of the major anaerobic pathogens in oral infections, Porphyromonas gingivalis (P. gingivalis) acquires iron and porphyrin mainly from hemoglobin in the host. Hence, we developed a nanophotosensitizer named as oxyHb@IR820 through stable complexation between oxyhemoglobin and IR820, which is a photosensitizer possessing both PTT and PDT performance, for fighting P. gingivalis oral infection specifically and efficiently. Owing to hydrophobic interaction, oxyHb@IR820 had much stronger photoabsorption at 808 nm than free IR820, and thus exhibited significantly enhanced photothermal conversion efficiency. As an oxygen donor, oxyHb played an important role in enhancing the photodynamic efficiency of oxyHb@IR820. More importantly, oxyHb@IR820 showed efficient and specific uptake in P. gingivalis and exerted synergistic PTT/PDT performance against P. gingivalis and oral infection in golden hamsters. In summary, this study provides an efficient strategy for delivering photosensitizers specifically to P. gingivalis and augmenting antibacterial PDT against anaerobic infections.
Collapse
Affiliation(s)
- Liya Bai
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Enyu Shi
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yunan Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Meng Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin300070, China
| | - Changyi Li
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yue Wang
- School of Dentistry & Hospital of Stomatology, Tianjin Medical University, Tianjin300070, China
| | - Yinsong Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, China
| |
Collapse
|
8
|
Pang J, Zhang F, Wang Z, Wu Q, Liu B, Meng X. Inhibitory effect and mechanism of curcumin-based photodynamic inactivation on patulin secretion by Penicillium expansum. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Khan AM, Pervez L, Celli J, Khattak M, Ullah M, Shah Z, Khan MM, Nadeem M, Faisal S, Nadhman A. Photokilling of waterborne-resistant pathogenic bacteria using cobalt-doped zinc oxide doped on reduced graphene oxide nanoparticles. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2022; 15. [DOI: 10.1142/s179354582240003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
This study is aimed at the chemical synthesis of light-activated cobalt-doped zinc oxide and its further doping on reduced graphene oxide (RGO) and assessment of its antibacterial activity on antibiotic-resistant waterborne pathogens including Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. The synthesized nanoparticles were characterized via UV–vis spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The minimal inhibitory concentration (MIC) of nanoparticles portrayed a significant killing of both Gram-positive and Gram-negative bacteria. The synthesized nanoparticles were further found as active killers of bacteria in drinking water. Further, these nanoparticles were found photothermally active alongside ROS generators. The photokilling activity makes them ideal replacement candidates for traditional water filters.
Collapse
Affiliation(s)
- Ameer Muhammad Khan
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| | - Laiba Pervez
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| | - Jonathan Celli
- Department of Physics, University of Massachusetts, Boston, MA 02125, USA
| | - Mutiullah Khattak
- Department of Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University Hayatabad, Peshawar, KP, Pakistan
| | - Maqdad Ullah
- Department of Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University Hayatabad, Peshawar, KP, Pakistan
| | - ZiaUllah Shah
- Department of Pharmacy, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI, Peshawar, Pakistan
| | - Muhammad Mustafa Khan
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| | - Muhammad Nadeem
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| | - Sulaiman Faisal
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| | - Akhtar Nadhman
- Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan
| |
Collapse
|
10
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
11
|
Hameed S, Khalil AT, Ali M, Iqbal J, Rahman L, Numan M, Khamlich S, Maaza M, Ullah I, Abbasi BA, Alasmari F, Shinwari ZK. Precursor effects on the physical, biological, and catalytic properties of Fagonia indica Burm.f. mediated zinc oxide nanoparticles. Microsc Res Tech 2021; 84:3087-3103. [PMID: 34310797 DOI: 10.1002/jemt.23867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/06/2022]
Abstract
We report a facile, green and precursor-based comparative study on the biosynthesis of zinc oxide (ZnO) nanoparticles (NPs) using anticancerous Fagonia indica as effective chelating agent. Biosynthesis was carried out using zinc sulfate and zinc acetate as precursor salts to make ZnOS and ZnOA NPs under similar experimental conditions which were characterized extensively for physical and biological properties. Scherrer equation deduced a mean crystallite size of ~23.4 nm for ZnOA NPs and ~41 nm for ZnOS NPs. The nature of the NPs was compared using UV, diffuse reflectance spectra, Fourier transform infrared spectroscopy, thermogravimetric analysis-DTA, selected area electron diffraction, EDS, zeta potential, high resolution (HR)-SEM, and HR-TEM. Detailed in vitro pharmacognostic activities revealed a significant therapeutic potential for ZnOA and ZnOS . Potential antimicrobial activities for the NPs and their nanocosmeceutical formulations are reported. ZnOA NPs were more cytotoxic to Leishmania tropica as compared to ZnOS . Significant antioxidant and protein kinase inhibition was obtained. The hemolytic assay indicated a hemocompatible nature of both ZnOA and ZnOS NPs. Catalytic degradation of crystal violet dye (CVD) by NPs was examined under different parameters (light, dark, UV). Furthermore, sonophotocatalytic degradation of CVD was also studied. Our results suggested that precursor can have a significant effect on the physical, biological, and catalytic properties of the NPs. In future, we recommend different other in vitro, in vivo biological activities, and mechanistic studies of these as-synthesized NPs.
Collapse
Affiliation(s)
- Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital, MTI, Peshawar, Pakistan.,UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, Western Cape, South Africa
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkkhwa, Pakistan.,Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Lubna Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Numan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saleh Khamlich
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, Western Cape, South Africa
| | - Ikram Ullah
- Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | | | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
12
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
13
|
do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem 2021; 29:2127-2141. [PMID: 34254904 DOI: 10.2174/0929867328666210709105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450 Goiania, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
Hobelsberger S, Krauß MP, Bogdan C, Aschoff R. [Successful treatment of cutaneous leishmaniasis with simulated daylight photodynamic therapy]. Hautarzt 2021; 73:376-378. [PMID: 34213573 DOI: 10.1007/s00105-021-04852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
A 5-year-old Syrian boy , presented with a complex cutaneous leishmaniasis (CL) of the right ankle caused by Leishmania (L.) tropica. The patient received photodynamic therapy (PDT; 6 cycles with application of 5‑aminolevulinic acid and foil occlusion for 3 h). Due to pain during exposure to red light, exposure was continued with simulated daylight (sDL-PDT). The lesion healed with an atrophic scar. Due to fewer side effects and less pain, sDL-PDT seems to be a good therapeutic strategy for CL caused by L. tropica.
Collapse
Affiliation(s)
- Sarah Hobelsberger
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Marie-Paloma Krauß
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| | - Roland Aschoff
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
15
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
16
|
Zia M, Faisal S, Shams DF, Anjum F, Saeed M, Shah Z, Nadhman A. Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst. APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY 2021; 30:87-91. [DOI: 10.5757/asct.2021.30.3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 10/10/2024]
Affiliation(s)
| | | | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Farida Anjum
- Directorate of Soil and Plant Nutrition, Agricultural Research Institute Tarnab, Peshawar 25000, Pakistan
| | - Mehk Saeed
- Deparment of Biotechnology, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| | - ZiaUllah Shah
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| | - Akhtar Nadhman
- Deparment of Biotechnology, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| |
Collapse
|
17
|
Majeed A, Javed F, Akhtar S, Saleem U, Anwar F, Ahmad B, Nadhman A, Shahnaz G, Hussain I, Hussain SZ, Sohail MF. Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B 2021; 8:8444-8458. [PMID: 32812631 DOI: 10.1039/d0tb01553a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile, green synthesis of selenium doped zinc oxide nano-antibiotic (Se-ZnO-NAB) using the Curcuma longa extract is reported to combat the increased emergence of methicillin-resistant Staphylococcus aureus (MRSA). The developed Se-ZnO-NAB were characterized for their physicochemical parameters and extensively evaluated for their toxicological potential in an animal model. The prepared Se-ZnO-NABs were characterized via Fourier transformed infrared spectroscopy to get functional insight into their surface chemistry, scanning electron microscopy revealing the polyhedral morphology with a size range of 36 ± 16 nm, having -28.9 ± 6.42 mV zeta potential, and inductively coupled plasma optical emission spectrometry confirming the amount of Se and Zn to be 14.43 and 71.70 mg L-1 respectively. Moreover, the antibacterial activity against MRSA showed significantly low minimum inhibitory concentration at 6.2 μg mL-1 when compared against antibiotics. Also, total protein content and reactive oxygen species production in MRSA, under the stressed environment of Se-ZnO-NAB, significantly (p < 0.05) decreased compared to the negative control. Moreover, the results of acute oral toxicity in rats showed moderate variations in blood biochemistry and histopathology of vital organs. The teratogenicity and fetal evaluations also revealed some signs of toxicity along with changes in biochemical parameters. The overall outcomes suggest that Se-ZnO-NAB can be of significant importance for combating multi-drug resistance but must be used with extreme caution, particularly in pregnancy, as moderate toxicity was observed at a toxic dose of 2000 mg kg-1.
Collapse
Affiliation(s)
- Abdul Majeed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Faryal Javed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Sundus Akhtar
- Department of Biotechnology, Minhaj University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacy, Government College University (GCU), Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Phase VI, Hayatabad, Peshawar, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan. and Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan and Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| |
Collapse
|
18
|
Sakane KK, Bhattacharjee T, Fagundes J, Marcolino LMC, Ferreira I, Pinto JG, Ferreira-Strixino J. Biochemical changes in Leishmania braziliensis after photodynamic therapy with methylene blue assessed by the Fourier transform infrared spectroscopy. Lasers Med Sci 2020; 36:821-827. [PMID: 32748166 DOI: 10.1007/s10103-020-03110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.
Collapse
Affiliation(s)
- Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap, Shishima Hifumi Avenue, 2911, São Jose dos Campos, São Paulo, 12244-000, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Jaciara Fagundes
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Luciana Maria Cortez Marcolino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Isabelle Ferreira
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
- Instituto de Ciências da Saúde - ICS, UNIP, Rod. Presidente Dutra, km 157, 5 - Rio Comprido, São José dos Campos, São Paulo, SP 12240-420, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil.
| |
Collapse
|
19
|
Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020; 10:e00156. [PMID: 32566773 PMCID: PMC7298521 DOI: 10.1016/j.parepi.2020.e00156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a widespread disease that causes 20,000 to 30,000 deaths annually, making it a major health problem in endemic areas. Because of low-performance medications, drug delivery poses a great challenge for better treatment of leishmaniasis. The present study's purpose was to review the application of nanoparticles as a new method in leishmaniasis treatment. To identify all relevant literature, we searched Web of Sciences, Scopus, PubMed, NCBI, Scielo, and Google Scholar, and profiled studies published between 1986 and 2019. In the present study, we tried to identify different research efforts in different conditions that examined the influence of various nanoparticles on different forms of leishmaniasis. In this way, we could compare their results and obtain a reliable conclusion from the most recent studies on this subject. Our review's results indicate that incorporating nanoparticles with chemical drugs improves the quality, efficiency, and sustainability of drugs and reduces their costs. Finally, considering the use of nanoparticles in the destruction of parasites, their inhibitory effect (making drugs more effective and less harmful), and their utility in making effective vaccines to prevent and fight against parasites, further research on this issue is highly recommended.
Collapse
Affiliation(s)
- Amir Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazal Shahrokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esraa Gabal
- Agricultural Science and Resource Management in the Tropics and Subtropics, Bonn University, Germany
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
20
|
Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front Chem 2020; 8:376. [PMID: 32582621 PMCID: PMC7283583 DOI: 10.3389/fchem.2020.00376] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Herein, the role of metal-based nanoparticles (NPs) in biomedical analysis and the treatment of critical deceases been highlighted. In the world of nanotechnology, noble elements such as the gold/silver/palladium (Au/Ag/Pd) NPs are the most promising emerging trend to design bioengineering materials that could to be employed as modern diagnostic tools and devices to combat serious diseases. NPs are considered a powerful and advanced chemical tool to diagnose and to cure critical ailments such as HIV, cancer, and other types of infectious illnesses. The treatment of cancer is the most significant application of nanotechnology which is based on premature tumor detection and analysis of cancer cells through Nano-devices. The fascinating characteristic properties of NPs-such as high surface area, high surface Plasmon resonance, multi-functionalization, highly stable nature, and easy processing-make them more prolific for nanotechnology. In this review article, the multifunctional roles of Au/Ag/Pd NPs in the field of medical science, the physicochemical toxicity dependent properties, and the interaction mechanism is highlighted. Due to the cytotoxicity of Ag/Au/Pd NPs, the conclusion and future remarks emphasize the need for further research to minimize the toxicity of NPs in the bio-medicinal field.
Collapse
Affiliation(s)
- Sundas Bahar Yaqoob
- Department of Zoology, Mirpur University of Science and Technology Mirpur, Mirpur, Pakistan
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Mohammad Rashid
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
21
|
Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, Wang Y. Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases. Mol Pharm 2020; 17:2260-2274. [PMID: 32433886 DOI: 10.1021/acs.molpharmaceut.0c00337] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are chemically reactive species that are produced in cellular aerobic metabolism. They mainly include superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet oxygen, ozone, and nitric oxide and are implicated in many physiological and pathological processes. Bilirubin, a cardinal pigment in the bile, has been increasingly investigated to treat cancer, diabetes, ischemia-reperfusion injury, asthma, and inflammatory bowel diseases (IBD). Indeed, bilirubin has been shown to eliminate ROS production, so it is now considered as a promising therapeutic agent for ROS-mediated diseases and can be used for the development of antioxidative nanomedicines. This review summarizes the current knowledge of the physiological mechanisms of ROS production and its role in pathological changes and focuses on discussing the antioxidative effects of bilirubin and its application in the experimental studies of nanomedicines. Previous studies have shown that bilirubin was mainly used as a responsive molecule in the microenvironment of ROS overproduction in neoplastic tissues for the development of anticancer nanodrugs; however, it could also exert powerful ROS scavenging activity in chronic inflammation and ischemia-reperfusion injury. Therefore, bilirubin, as an inartificial ROS scavenger, is expected to be used for the development of nanomedicines against more diseases due to the universality of ROS involvement in human pathological conditions.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Shiyun Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| |
Collapse
|
22
|
Ahmad A, Ullah S, Syed F, Tahir K, Khan AU, Yuan Q. Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine (Lond) 2020; 15:809-828. [DOI: 10.2217/nnm-2019-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis, a category 1 disease, has remained neglected for decades, and therefore, has developed into a severe health problem worldwide. Unfortunately, the available antileishmanial drugs are limited, and the parasites have shown an inevitable resistance toward most of these drugs. All these factors pose a barrier to control the parasite at present. Hence, new strategies are needed to develop more effective and less toxic nanomedicines that could treat and manage the Leishmania parasite. One of these effective strategies is to construct nanometals with biologically active molecules that could possess dynamic antileishmanial activities with desirable biocompatibility. In this review paper, antileishmanial potencies of different metal nanoparticles, with particular emphasis on biogenic metal nanoparticles from 2011 to 2019, are summarized. The mechanisms by which metal-based nanomedicines kill Leishmania are also discussed.
Collapse
Affiliation(s)
- Aftab Ahmad
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Sadeeq Ullah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chaoyang District, Beijing, 100029, PR China
| | - Fatima Syed
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University D.I. Khan, KP, 29050, Pakistan
| | - Arif U Khan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
23
|
Islam A, Ain Q, Munawar A, Corrêa Junior JD, Khan A, Ahmad F, Demicheli C, Shams DF, Ullah I, Sohail MF, Yasinzai M, Frézard F, Nadhman A. Reactive oxygen species generating photosynthesized ferromagnetic iron oxide nanorods as promising antileishmanial agent. Nanomedicine (Lond) 2020; 15:755-771. [PMID: 32193975 DOI: 10.2217/nnm-2019-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the photodynamic therapeutic potential of ferromagnetic iron oxide nanorods (FIONs), using Trigonella foenum-graecum as a reducing agent, against Leishmania tropica. Materials & methods: FIONs were characterized using ultraviolet visible spectroscopy, x-ray diffraction and scanning electron microscopy. Results: FIONs showed excellent activity against L. tropica promastigotes and amastigotes (IC50 0.036 ± 0.003 and 0.072 ± 0.001 μg/ml, respectively) upon 15 min pre-incubation light-emitting diode light (84 lm/W) exposure, resulting in reactive oxygen species generation and induction of cell death via apoptosis. FIONs were found to be highly biocompatible with human erythrocytes (LD50 779 ± 21 μg/ml) and significantly selective (selectivity index >1000) against murine peritoneal macrophages (CC50 102.7 ± 2.9 μg/ml). Conclusion: Due to their noteworthy in vitro antileishmanial properties, FIONs should be further investigated in an in vivo model of the disease.
Collapse
Affiliation(s)
- Arshad Islam
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.,Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Quratul Ain
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Amna Munawar
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - José Dias Corrêa Junior
- Departamento of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ajmal Khan
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Farhan Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Frédéric Frézard
- Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| |
Collapse
|
24
|
Khan T, Ullah N, Khan MA, Mashwani ZUR, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci 2019; 272:102017. [PMID: 31437570 DOI: 10.1016/j.cis.2019.102017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
|
25
|
Nazir S, Rabbani A, Mehmood K, Maqbool F, Shah GM, Khan MF, Sajid M. Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int J Nanomedicine 2019; 14:7809-7822. [PMID: 31576125 PMCID: PMC6767875 DOI: 10.2147/ijn.s203351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Nanoparticles (NPs) can be toxic due to their nano-range sizes. Zinc oxide (ZnO) has good biocompatibility and is commercially used in cosmetics. Moreover, ZnO NPs have potential biomedical uses, but their safety remains unclear. METHODS A range of doped ZnO NPs was evaluated for antileishmanial activity and in vitro toxicity in brine shrimp and human macrophages, and N-doped ZnO NPs were evaluated for in vivo toxicity in male BALB/C mice. N-doped ZnO NPs were administered via two routes: intra-peritoneal injection and topically as a paste. The dosages were 10, 50, and 100 mg/kg/day for 14 days. RESULTS Topical administration was safe at all dosages, but intra-peritoneal injection displayed toxicity at higher doses, namely, 50 and 100 mg/kg/day. The pathological results for the i.p. dose groups were mild to severe degenerative changes in parenchyma cells, increases in Kupffer cells, disappearance of hepatic plates, increases in cell size, ballooning, cytoplasmic changes, and nuclear pyknosis in the liver. Kidney histology was also altered in the i.p. administration group (dose 100 mg/kg/day), with inflammatory changes in the focal area. We associate pathological abnormalities with the presence of doped ZnO NPs at the diseased site, which was verified by PIXE analysis of the liver and kidney samples of the treated and untreated mice groups. CONCLUSION The toxicity of the doped ZnO NPs can serve as an essential determinant for the effects of ZnO NPs on environmental toxicity and can be used for guidelines for safer use of ZnO-based nanomaterials in topical treatment of leishmaniasis and other biomedical applications.
Collapse
Affiliation(s)
- Samina Nazir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Atiya Rabbani
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Khalid Mehmood
- Medical Centre, Quaid-e-Azam University, Islamabad, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | | | - Muhammad Sajid
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
26
|
Fagundes J, Sakane KK, Bhattacharjee T, Pinto JG, Ferreira I, Raniero LJ, Ferreira-Strixino J. Evaluation of photodynamic therapy with methylene blue, by the Fourier Transform Infrared Spectroscopy (FT-IR) in Leishmania major - in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:229-235. [PMID: 30245137 DOI: 10.1016/j.saa.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Jaciara Fagundes
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap. Shishima Hifumi Avenue, 2911, 12244-000 São Jose dos Campos, São Paulo, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin 9016, New Zealand
| | - Juliana Guerra Pinto
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Isabelle Ferreira
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil; Instituto de Ciências da Saúde - ICS - UNIP. Rod. Presidente Dutra, km 157, 5 - Rio Comprido, São José dos Campos SP 12240-420, São Paulo, Brazil
| | - Leandro Jose Raniero
- Nanosensors Laboratory - Research and Development Institute - R&DI, University of Vale do Paraíva, UniVap, Shishima Hifumi Avenue, 2911, 12244-000 São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Photodynamic Therapy Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap. Shishima Hifumi Avenue 2911, 12244-000 São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
27
|
Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6926712. [PMID: 29849910 PMCID: PMC5907420 DOI: 10.1155/2018/6926712] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
The effects of zinc oxide nanoparticles (ZnONPs) on antioxidants in Nile tilapia muscles and the protective role of vitamins C and E were examined. Two hundred males of Nile tilapia were held in aquaria (10 fishes/aquarium). Fishes were divided into 5 groups: 40 fishes in each group; the first group was the control; the 2nd and 3rd groups were exposed to 1 and 2 mg/L of ZnONPs, respectively; and the 4th and 5th group were exposed to 1 and 2 mg/L of ZnONPs and treated with a (500 mg/kg diet) mixture of vitamin C and E mixture (250 mg/kg diet of each). Muscles were collected on the 7th and 15th day of treatments. Muscle malondialdehyde, reduced glutathione levels, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities were measured after treatments. Relative quantification of SOD, CAT, GR, GPx, and GST mRNA transcripts was detected in the muscles. Results showed that MDA and GSH concentration; SOD, CAT, GR, GPx, and GST activities; and mRNA expression were significantly decreased in groups exposed to ZnONPs. Vitamins C and E significantly ameliorated the toxic effects of ZnONPs. In conclusion, vitamins C and E have the ability to ameliorate ZnONP oxidative stress toxicity in Nile tilapia.
Collapse
|
28
|
Ovais M, Nadhman A, Khalil AT, Raza A, Khuda F, Sohail MF, Islam NU, Sarwar HS, Shahnaz G, Ahmad I, Saravanan M, Shinwari ZK. Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine (Lond) 2017; 12:2807-2819. [PMID: 29111869 DOI: 10.2217/nnm-2017-0233] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many recent key innovations in nanotechnology have greatly fascinated scientists to explore new avenues in treatment and diagnosis of emerging diseases. Due to extensive utilization of metallic nanoparticles (NPs) in diverse biomedical applications, scientists are looking forward to green synthesis of NPs as safer, simple, fast, and low-cost method over chemical and physical methods. Due to enriched phytochemistry, no need for maintenance and ready availability, plants are preferred for green synthesis of silver (AgNPs) and gold NPs (AuNPs). Recently, several researchers have exploited these biogenic NPs as potential antileishmanial agents. The current article is focused to mechanistically explain the antileishmanial activity of biogenic AuNPs and AgNPs with a futuristic discussion on the faith of these particles as emerging antileishmanial agents.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- National Institute for Lasers & Optronics (NILOP), Pakistan Atomic Energy Commission, Islamabad 44000, Pakistan
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan
| | - Ali Talha Khalil
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
| | - Abida Raza
- National Institute for Lasers & Optronics (NILOP), Pakistan Atomic Energy Commission, Islamabad 44000, Pakistan
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Farhan Sohail
- Department of Medicine, Biomaterials Innovation Research Center, Brigham & Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar 25000, Pakistan
| | | | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Muthupandian Saravanan
- Department of Medical Microbiology & Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Medical Microbiology & Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
- Pakistan Academy of Sciences (PAS), Islamabad 44000, Pakistan
| |
Collapse
|
29
|
Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017; 22:E1370. [PMID: 28820471 PMCID: PMC6152252 DOI: 10.3390/molecules22081370] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases can be transmitted and they cause a significant burden on public health globally. They are the greatest world killers and it is estimated that they are responsible for the demise of over 17 million people annually. The impact of these diseases is greater in the developing countries. People with compromised immune systems and children are the most affected. Infectious diseases may be caused by bacteria, viruses, and protozoa. The treatment of infectious diseases is hampered by simultaneous resistance to multiple drugs, indicating that there is a serious and pressing need to develop new therapeutics that can overcome drug resistance. This review will focus on the recent reports of metal-based nanoparticles that are potential therapeutics for the treatment of infectious diseases and their biological efficacy (in vitro and in vivo).
Collapse
Affiliation(s)
- Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
30
|
Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:838-852. [DOI: 10.1080/21691401.2017.1345928] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ikram Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Dilawar Hassan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| |
Collapse
|