1
|
Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:2321-2335. [PMID: 35638755 DOI: 10.1021/acsbiomaterials.2c00368] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87 Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
2
|
A One-Stop Protocol to Assess Myocardial Fibrosis in Frozen and Paraffin Sections. Methods Protoc 2022; 5:mps5010013. [PMID: 35200529 PMCID: PMC8877130 DOI: 10.3390/mps5010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Masson’s Trichrome Staining (MTS) is a useful tool for analyzing fibrosis in a plethora of disease pathologies by differential staining of tissue components. It is used to identify collagen fibers in different tissues like heart, lung, skin, and muscles. Especially in cardiac fibrosis, MTS stains the collagen fibers (blue color), which helps in the distinction of scar area versus the healthy area (red color). However, there are several challenges to stain both paraffin-embedded sections and frozen (cryosections) using a single protocol. Therefore, the goal of this study was to develop a simple short protocol to assess cardiac fibrosis in both paraffin-embedded and cryo heart sections. MTS uses three different stains, i.e., Weigert’s Iron Hematoxylin, Biebrich scarlet-acid fuchsin, and aniline blue to detect nuclei, cytoplasm, and collagen, respectively. In this study, we developed a simple short protocol that can be adapted by any lab to easily assess cardiac fibrosis in paraffin and frozen heart sections. Furthermore, we have addressed the challenges that are commonly faced during the immunostaining process and troubleshooting techniques. Overall, we have successfully developed a simple one-step protocol to assess myocardial fibrosis in paraffin-embedded and frozen cryosections.
Collapse
|
3
|
Gu X, Li Y, Qi C, Cai K. Biodegradable magnesium phosphates in biomedical applications. J Mater Chem B 2022; 10:2097-2112. [DOI: 10.1039/d1tb02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an essential element, magnesium is involved in a variety of physiological processes. Magnesium is the second most abundant cation in cells and the fourth most abundant cation in living...
Collapse
|
4
|
Sri Ramakrishnan L, Ps U, Sabu CK, Krishnan AG, Nair MB. Effect of wheat gluten on improved thermal cross-linking and osteogenesis of hydroxyapatite-gelatin composite scaffolds. Int J Biol Macromol 2021; 183:1200-1209. [PMID: 33961879 DOI: 10.1016/j.ijbiomac.2021.04.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Promising strategies to stabilize gelatin or collagen include glutaraldehyde-based chemical cross-linking or dehydrothermal treatment at different temperatures (120-180 °C). However, these procedures require 24-48 h for complete cross-linking to occur. The present study aims to evaluate the role of wheat gluten on enhancing thermal cross-linking of silica-nanohydroxyapatite (nanoHA)-gelatin composite scaffolds within a shorter period (2 h). Changes in properties were evaluated by varying the ratio of gelatin and gluten in silica-nanoHA matrix (60 wt% ceramic: 40 wt% polymer). The results showed that the scaffolds cross-linked at 170 °C were stable in phosphate-buffered saline for 21 days. It was crystalline and porous in nature. However, the scaffolds with high weight percentage of wheat gluten were brittle, while those with low gluten degraded fast in vitro. The mesenchymal stem cells could adhere, proliferate and differentiate into osteogenic lineage on wheat gluten-containing scaffolds for 21 days (mainly medium concentration). The scaffold also supported new bone formation in critical-sized rat calvarial defect, showing its osteoconductive and osteointegrative nature. In short, this study showed the potential of wheat gluten on improving thermal cross-linking within a shorter period and its suitability to use as a biomimetic bone graft for bone tissue engineering.
Collapse
Affiliation(s)
- Lalitha Sri Ramakrishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Unnikrishnan Ps
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Chinchu K Sabu
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Amit G Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682024, India.
| |
Collapse
|
5
|
Zhao Q, Tang H, Ren L, Wei J. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite. Int J Nanomedicine 2020; 15:7279-7295. [PMID: 33061381 PMCID: PMC7535120 DOI: 10.2147/ijn.s255477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose A bioactive and degradable scaffold of ternary composite with good biocompatibility and osteogenesis was developed for bone tissue repair. Materials and Methods Polybutylene succinate (PS:50 wt%), magnesium phosphate (MP:40 wt%) and wheat protein (WP:10 wt%) composite (PMWC) scaffold was fabricated, and the biological performances of PMWC were evaluated both in vitro and vivo in this study. Results PMWC scaffold possessed not only interconnected macropores (400 μm to 600 μm) but also micropores (10 μm ~20 μm) on the walls of macropores. Incorporation of MP into composite improved the apatite mineralization (bioactivity) of PMWC scaffold in simulated body fluid (SBF), and addition of WP into composite further enhanced the degradability of PMWC in PBS compared with the scaffold of PS (50 wt%)/MP (50 wt%) composite (PMC) and PS alone. In addition, the PMWC scaffold containing MP and WP significantly promoted the proliferation and differentiation of mouse pre-osteoblastic cell line (MC3T3-E1) cells. Moreover, the images from synchrotron radiation microcomputed tomography (SRmCT) and histological sections of the in vivo implantation suggested that the PMWC scaffold containing MP and WP prominently improved the new bone formation and ingrowth compared with PMC and PS. Furthermore, the immunohistochemical analysis further confirmed that the PMWC scaffold obviously promoted osteogenesis and vascularization in vivo compared with PMC and PS. Conclusion This study demonstrated that the biocompatible PMWC scaffold with improved bioactivity and degradability significantly promoted the osteogenesis and vascularization in vivo, which would have a great potential to be applied for bone tissue repair.
Collapse
Affiliation(s)
- Qinghui Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Hongming Tang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Lishu Ren
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
6
|
Xu Z, Wu H, Wang F, Kaewmanee R, Pan Y, Wang D, Qu P, Wang Z, Hu G, Zhao J, Zhao R, Wei J. A hierarchical nanostructural coating of amorphous silicon nitride on polyetheretherketone with antibacterial activity and promoting responses of rBMSCs for orthopedic applications. J Mater Chem B 2020; 7:6035-6047. [PMID: 31545329 DOI: 10.1039/c9tb01565e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Silicon nitride (SN) with good osteoconductivity has been introduced as an implantable biomaterial for joint replacement and interbody fusion devices. In this study, SN was coated on a polyetheretherketone (PEEK) surface by inductively coupled plasma-enhanced chemical vapor deposition (ICPECVD). The results showed that a dense coating (thickness of about 500 nm) of amorphous SN was closely combined with a PEEK substrate (PKSN) with a binding strength of 6.88 N. In addition, the coating surface showed hierarchical nanostructures containing many spherical bulges (sizes about 150 nm), which were composed of many small humps (sizes about 10 nm). Moreover, the roughness, hydrophilicity, surface energy, surface charge and adsorption of bovine serum albumin (BSA) of PKSN were obviously higher than those of PEEK. After immersion into simulated body fluid (SBF), the Si ions were gradually released from PKSN into SBF and a weak alkaline environment was created. Antibacterial experiments showed that PKSN exhibited a greater antibacterial activity than that of PEEK. Moreover, compared with PEEK, PKSN significantly promoted adhesion, proliferation, differentiation and expression of osteogenic related genes of the rat bone marrow stromal cells (rBMSCs). In conclusion, the SN coating of PKSN with hierarchical nanostructures exhibited excellent antibacterial activity and cytocompatibility, which would make it a great candidate for orthopedic applications.
Collapse
Affiliation(s)
- Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang Y, Bian Y, Zhou L, Feng B, Weng X, Liang R. Biological evaluation of bone substitute. Clin Chim Acta 2020; 510:544-555. [PMID: 32798511 DOI: 10.1016/j.cca.2020.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023]
Abstract
Critical-sized defects (CSDs) caused by trauma, tumor resection, or skeletal abnormalities create a high demand for bone repair materials (BRMs). Over the years, scientists have been trying to develop BRMs and evaluate their efficacy using numerous developed methods. BRMs are characterized by osteogenesis and angiogenesis promoting properties, the latter of which has rarely been studied in vitro and in vivo. While blood vessels are required to provide nutrients. Bone mass maintains a dynamic balance under the joint action of osteolytic and osteogenic activity in which monocytes differentiate into osteolytic cells, and osteoprogenitor cells differentiate into osteogenic cells. This review would be helpful for inexperienced researchers as well as present a comprehensive overview of methods used to investigate the effect of BRMs on osteogenic cells, osteolytic cells, and blood vessels, as well as their biocompatibility and biological performance. This review is expected to facilitate further research and development of new BRMs.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lizhi Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Chi H, Song X, Song C, Zhao W, Chen G, Jiang A, Wang X, Yu T, Zheng L, Yan J. Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5305-5315. [DOI: 10.1021/acsbiomaterials.9b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hui Chi
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Guanghua Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Anlong Jiang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Xiaoyan Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Tailong Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | | |
Collapse
|
9
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|