1
|
Won DS, Lee H, Park Y, Chae M, Kim YC, Lim B, Kang MH, Ok MR, Jung HD, Park JH. Dual-Layer Nanoengineered Urinary Catheters for Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. Adv Healthc Mater 2024:e2401700. [PMID: 39036863 DOI: 10.1002/adhm.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection; however, current therapeutic strategies remain insufficient for standard clinical application. A novel urinary catheter featuring a dual-layer nanoengineering approach using zinc (Zn) and silver nanoparticles (AgNPs) is successfully fabricated. This design targets microbial resistance, minimizes cytotoxicity, and maintains long-term efficacy. The inner AgNPs layer provides immediate antibacterial effects against the UTI pathogens, while the outer porous Zn layer controls zero-order Ag release and generates reactive oxygen species, thus enhancing long-term bactericidal performance. Enhanced antibacterial properties of Zn/AgNPs-coated catheters are observed, resulting in 99.9% of E. coli and 99.7% of S. aureus reduction, respectively. The Zn/AgNPs-coated catheter significantly suppresses biofilm with sludge formation compared to AgNP-coated and uncoated catheters (all, p < 0.05). The Zn/AgNP-coated catheter in a rabbit model demonstrated a durable, effective barrier against bacterial colonization, maintaining antimicrobial properties during the catheter indwelling period with significantly reduced inflammation and epithelial disruption compared with AgNP and uncoated groups. This innovation has the potential to revolutionize the design of antimicrobial medical devices, particularly for applications requiring long-term implantation. Although further preclinical studies are required to verify its efficacy and safety, this strategy seems to be a promising approach to preventing CAUTI-related complications.
Collapse
Affiliation(s)
- Dong-Sung Won
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Minjung Chae
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bumjin Lim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Myoung-Ryul Ok
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
2
|
Cajiao Checchin V, Cacciari RD, Rubert AA, Lieblich M, Caregnato P, Fagali NS, Fernández Lorenzo de Mele M. Innovative Anodic Treatment to Obtain Stable Metallic Silver Micropatches on TiO 2 Nanotubes: Structural, Electrochemical, and Photochemical Properties. ACS OMEGA 2024; 9:9644-9654. [PMID: 38434842 PMCID: PMC10905698 DOI: 10.1021/acsomega.3c09687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024]
Abstract
Electrochemical modification of the Ti surface to obtain TiO2 nanotubes (NT-Ti) has been proposed to enhance osseointegration in medical applications. However, susceptibility to microbial adhesion, linked to biomaterial-associated infections, and the high TiO2 band gap energy, which allows light absorption almost exclusively in the ultraviolet (UV) region, limit its applications. Modifying the TiO2 semiconductor with metals such as Ag has been suggested both for antimicrobial purposes and for absorbing light in the visible region. The formation of NT-Ti with Ag micropatches (Ag-NT-Ti) is pursued with the objective of enhancing the stability of the deposits and preventing cytotoxic levels of Ag cellular uptake. The innovative process proposed here involves immersing NT-Ti in a AgNO3 solution as the initial step. Diverging from previously reported electrochemical methods, this process incorporates anodization within the TiO2 oxide formation region instead of cathodic reduction generally employed by other researchers. The final step encompasses an annealing treatment. The treatments result in the in situ Ag1+ reduction and formation of stable and active micropatches of metallic Ag on the NT-Ti surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman, diffuse reflectance spectroscopy (DRS), wettability assessment, and electrochemical characterizations were conducted to evaluate the modified surfaces. The well-known properties of NT-Ti surfaces were enhanced, leading to improved photocatalytic activity across both visible and UV regions, significant stability against detachment, and controlled release of Ag1+ for promising antimicrobial effects.
Collapse
Affiliation(s)
- Valentina
C. Cajiao Checchin
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Rodolfo D. Cacciari
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Aldo A. Rubert
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Marcela Lieblich
- Centro
Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain
| | - Paula Caregnato
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Natalia S. Fagali
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
3
|
Lukose CC, Anestopoulos I, Panagiotidis IS, Zoppi G, Black AM, Dover LG, Bowen L, Serrano-Aroca Á, Liu TX, Mendola L, Morrone D, Panayiotidis MI, Birkett M. Biocompatible Ti 3Au-Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality. Biomater Res 2023; 27:93. [PMID: 37749659 PMCID: PMC10521510 DOI: 10.1186/s40824-023-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Biofilm formation on medical device surfaces is a persistent problem that shelters bacteria and encourages infections and implant rejection. One promising approach to tackle this problem is to coat the medical device with an antimicrobial material. In this work, for the first time, we impart antimicrobial functionality to Ti3Au intermetallic alloy thin film coatings, while maintaining their superior mechanical hardness and biocompatibility. METHODS A mosaic Ti sputtering target is developed to dope controlled amounts of antimicrobial elements of Ag and Cu into a Ti3Au coating matrix by precise control of individual target power levels. The resulting Ti3Au-Ag/Cu thin film coatings are then systematically characterised for their structural, chemical, morphological, mechanical, corrosion, biocompatibility-cytotoxicity and antimicrobial properties. RESULTS X-ray diffraction patterns reveal the formation of a super hard β-Ti3Au phase, but the thin films undergo a transition in crystal orientation from (200) to (211) with increasing Ag concentration, whereas introduction of Cu brings no observable changes in crystal orientation. Scanning and transmission electron microscopy analysis show the polyhedral shape of the Ti3Au crystal but agglomeration of Ag particles between crystal grains begins at 1.2 at% Ag and develops into large granules with increasing Ag concentration up to 4.1 at%. The smallest doping concentration of 0.2 at% Ag raises the hardness of the thin film to 14.7 GPa, a 360% improvement compared to the ∼4 GPa hardness of the standard Ti6Al4V base alloy. On the other hand, addition of Cu brings a 315-330% improvement in mechanical hardness of films throughout the entire concentration range of 0.5-7.1 at%. The thin films also show good electrochemical corrosion resistance and a > tenfold reduction in wear rate compared to Ti6Al4V alloy. All thin film samples exhibit very safe cytotoxic profiles towards L929 mouse fibroblast cells when analysed with Alamar blue assay, with ion leaching concentrations lower than 0.2 ppm for Ag and 0.08 ppm for Cu and conductivity tests reveal the positive effect of increased conductivity on myogenic differentiation. Antimicrobial tests show a drastic reduction in microbial survival over a short test period of < 20 min for Ti3Au films doped with Ag or Cu concentrations as low as 0.2-0.5 at%. CONCLUSION Therefore, according to these results, this work presents a new antimicrobial Ti3Au-Ag/Cu coating material with excellent mechanical performance with the potential to develop wear resistant medical implant devices with resistance to biofilm formation and bacterial infection.
Collapse
Affiliation(s)
- Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Iraklis-Stavros Panagiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Guillaume Zoppi
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Anna M Black
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Leon Bowen
- Department of Physics, G.J. Russell Microscopy Facility, Durham University, Durham, DH1 3LE, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Terence Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
4
|
Shen Y, Jin Z, Ling M, Sun Z, Feng M, Xu C, Liu S. Advances in Research on Titanium and Titanium Alloys with Antibacterial Functionality for Medical Use—A Review. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Materials based on titanium and its alloys are widely used in the medical and dental fields because of their excellent physical properties such as hardness, ductility and elastic modulus, etc. However, because commonly used titanium alloy internal plants do not have antibacterial properties,
when these implants are implanted into the human body, there is a certain risk of infection. Such infections are extremely painful for the patient and problematic for the attending physician. In the past, infections of implants were usually treated with systemic antibiotics in combination
with thorough debridement or implant replacement. However, these are passive treatments and typically cause huge physical and economic burdens on the patient. Therefore, attempts towards the development of implants with antibacterial functionality have been increasing, with the combination
of titanium alloys with antibiotics, antibacterialmetals, and antibacterial peptides being the main research direction. Therefore, this paper will discuss the latest research progress in the preparation of titanium alloys with antibacterial strategies such as combining antibiotics or antimicrobial
peptides, adding antimicrobial metals, and the antibacterial properties and biocompatibility of proposed systems are summarised and discussed herein. This review should serve as a reference for further research on antibacterial titanium alloy implants.
Collapse
Affiliation(s)
- Yong Shen
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Zhankui Jin
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Ming Ling
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Zhengming Sun
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Min Feng
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital (The Affiliated Hospital of Xi’an Medical University), Xi’an, 710068, China
| |
Collapse
|
5
|
Mendes-Oliveira G, Luo Y, Zhou B, Gu G, Teng Z, Bolten S, Park E, Pearlstein D, Turner ER, Millner PD, Nou X. Use of a silver-based sanitizer to accelerate Escherichia coli die-off on fresh-cut lettuce and maintain produce quality during cold storage: Laboratory and pilot-plant scale tests. Food Res Int 2022; 157:111170. [PMID: 35761517 DOI: 10.1016/j.foodres.2022.111170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Outbreaks and product recalls involving romaine and iceberg lettuce are frequently reported in the United States. Novel technologies are needed to inactivate pathogens without compromising product quality and shelf life. In this study, the effects of a process aid composed of silver dihydrogen citrate, glycerin, and lactic acid (SGL) on Escherichia coli and Listeria monocytogenes concentrations on lettuce immediately after washing and during cold storage were evaluated. Sensory and quality attributes of fresh-cut iceberg lettuce were also evaluated. Laboratory results indicated that application of SGL solution for 30 s as a first step in the washing process resulted in a 3.15 log reduction in E. coli O157:H7 immediately after washing. For E. coli O157:H7 a significant difference between SGL treatment and all other treatments was maintained until day 7. On day zero, SGL led to a 2.94 log reduction of L. monocytogenes. However, there was no significant difference between treatments with or without SGL regardless of storage time. Pilot-plant results showed that samples receiving SGL spray followed by chlorinated flume wash exhibited a greater reduction (1.48 log) in nonpathogenic E. coli populations at the end of shelf life than other treatments (p < 0.05). Additional pilot plant tests were conducted to investigate the hypothesis that SGL residues could continue to impact microbial survival on the final washed lettuce. Results show that pathogens introduced subsequent to flume washing of lettuce pretreated with SGL solution were not affected by antimicrobial residues. The final quality and shelf life of flume washed lettuce were also unaffected by pretreatment with SGL. In conclusion, the results of this study demonstrate that this new technology has the potential to accelerate E. coli die-off on fresh-cut lettuce during cold storage and improve product safety, while not affecting quality throughout the shelf life of the finished products.
Collapse
Affiliation(s)
- Gabriella Mendes-Oliveira
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Yaguang Luo
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States; Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Bin Zhou
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Zi Teng
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Samantha Bolten
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Eunhee Park
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Daniel Pearlstein
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Ellen R Turner
- Food Quality Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| | - Patricia D Millner
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States.
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, USDA-ARS, Beltsville, MD 20705, United States
| |
Collapse
|
6
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
7
|
Liu S, Wang Q, Liu W, Tang Y, Liu J, Zhang H, Liu X, Liu J, Yang J, Zhang LC, Wang Y, Xu J, Lu W, Wang L. Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. NANOSCALE 2021; 13:10587-10599. [PMID: 34105578 DOI: 10.1039/d1nr02459k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium and its alloys are among the widely used materials in the biomedical field, but they have poor wear resistance and antibacterial properties. In the present study, anodization, photo-reduction, and spin-coating technologies were integrated to prepare a hybrid modified coating for bio-inert titanium implants, having excellent comprehensive performance. The surface roughness of Ti-35Nb-2Ta-3Zr was specifically optimized by surface modification leading to improved wear resistance. Ag ions are still detectable after 28 days of submersion in saline. The antibacterial rate of the composite coating group reaches 100% by plate counting due to the antibacterial mechanism of direct and indirect contact. Both bacteria morphology and fluorescence staining experiments confirm these results. Besides, no cytotoxicity was detected in our fabricated implants during the CCK-8 assay. Accordingly, fabrication of hybrid modified coatings on Ti-35Nb-2Ta-3Zr is an effective strategy for infection and cytotoxicity prevention. These hybrid modified coatings can be regarded as promising multifunctional biomaterials.
Collapse
Affiliation(s)
- Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Qingge Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China and State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wei Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jingxian Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Yan Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Jing Xu
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Weijie Lu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China. and Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
8
|
Nagase T. Alloy Design, Thermodynamics, and Electron Microscopy of Ternary Ti-Ag-Nb Alloy with Liquid Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5268. [PMID: 33233371 PMCID: PMC7700205 DOI: 10.3390/ma13225268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/23/2023]
Abstract
The Ti-Ag alloy system is an important constituent of dental casting materials and metallic biomaterials with antibacterial functions. The binary Ti-Ag alloy system is characterized by flat liquidus lines with metastable liquid miscibility gaps in the phase diagram. The ternary Ti-Ag-based alloys with liquid phase separation (LPS) were designed based on the mixing enthalpy parameters, thermodynamic calculations using FactSage and Scientific Group Thermodata Europe (SGTE) database, and the predicted ground state diagrams constructed by the Materials Project. The LPS behavior in the ternary Ti-Ag-Nb alloy was investigated using the solidification microstructure analysis in arc-melted ingots and rapidly solidified melt-spun ribbons via trans-scale observations, combined with optical microscopy (OM), scanning electron microscopy (SEM) including electron probe micro analysis (EPMA), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). The solidification microstructures depended on the solidification processing in ternary Ti-Ag-Nb alloys; macroscopic phase-separated structures were observed in the arc-melted ingots, whereas fine Ag globules embedded in the Ti-based matrix were observed in the melt-spun ribbons.
Collapse
Affiliation(s)
- Takeshi Nagase
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University,7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Hu CC, Chang CH, Chang Y, Hsieh JH, Ueng SWN. Beneficial Effect of TaON-Ag Nanocomposite Titanium on Antibacterial Capacity in Orthopedic Application. Int J Nanomedicine 2020; 15:7889-7900. [PMID: 33116507 PMCID: PMC7568682 DOI: 10.2147/ijn.s264303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose In this study, a novel oxygenated nanocomposite thin film, TaON-Ag, was investigated in vitro and in vivo to evaluate its biocompatibility and antibacterial ability. Material and Methods The antibacterial ability of TaON-Ag nanocomposite-coated titanium (Ti) was evaluated using the Kirby-Bauer disk diffusion susceptibility test. The effects of TaON-Ag nanocomposite-coated metal on osteogenesis were further evaluated in an in vitro osteogenic culture model with rat marrow-derived mesenchymal stem cells (rMSCs). Furthermore, titanium rods coated with TaON-Ag were implanted into a rat femur fracture model either with or without osteomyelitis to investigate the effects of TaON-Ag in osteogenesis. Results The TaON-Ag-coated Ti exhibited an effective antibacterial effect against Staphylococcus aureus, coagulase-negative Staphylococcus, and the Gram-negative strains Escherichia coli and Pseudomonas aeruginosa. Using an osteogenic culture with rMSCs and a rat femoral fracture model, the TaON-Ag-coated Ti did not interfere with the ossification of rMSCs in vitro or during fracture healing in vivo. Field-emission scanning electron microscopy (FE-SEM) revealed that coating with TaON-Ag could inhibit pathogen adhesion and biofilm formation in both Staphylococcus aureus and Escherichia coli. Conclusion Using the proposed novel oxygenation process, TaON-Ag nanocomposite-coated Ti yielded robust biocompatibility and antibacterial ability against common microorganisms in orthopedic infections, thereby demonstrating potential for use in clinical applications.
Collapse
Affiliation(s)
- Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.,Department of Orthopedic Surgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, People's Republic of China
| | - Chih-Hsiang Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan.,Center for Thin Film Technologies and Applications, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| | - Steve Wen-Neng Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| |
Collapse
|
10
|
Zhu MZ, Li Y, Zhou JC, Lu JH, Zhu RX, Qiao YN, Zhang JZ, Zong Y, Wang X, Jin XY, Zhang M, Chang WQ, Chen W, Lou HX. Terpenoids from the Chinese liverwort Odontoschisma grosseverrucosum and their antifungal virulence activity. PHYTOCHEMISTRY 2020; 174:112341. [PMID: 32240851 DOI: 10.1016/j.phytochem.2020.112341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Eight undescribed terpenoids, namely, odongrossins A-H, together with two known terpenoids were isolated from Odontoschisma grosseverrucosum Stephani (Cephaloziaceae). Their structures were established based on NMR data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction measurements. Odongrossin A and odongrossin G displayed moderate anti-virulence activities against CDR1-and CDR2-efflux-pump-deficient Candida albicans DSY654. Further investigation of odongrossin A revealed that it inhibited adhesion and biofilm formation on C. albicans DSY654. The results regarding the transcription levels of genes demonstrated that odongrossin A could regulate the expression of genes that are associated with the virulence of C. albicans DSY654.
Collapse
Affiliation(s)
- Ming-Zhu Zhu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jin-Chuan Zhou
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Jing-Hui Lu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong-Xiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250010, China
| | - Ya-Nan Qiao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jiao-Zhen Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zong
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xue-Yang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Wen-Qiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Wang Chen
- Vitamin D Research Institute, Shanxi University of Technology, Hanzhong, 723000, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
A Review of In-Situ Grown Nanocomposite Coatings for Titanium Alloy Implants. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Composite coatings are commonly applied to medical metal implants in order to improve biocompatibility and/or bioactivity. In this context, two types of titanium-based composite coatings have been reviewed as biocompatible and anti-bacterial coatings. The different composites can be synthesised on the surface of titanium using various methods, which have their own advantages and disadvantages. Moving with the smart and nanotechnology, multifunctional nanocomposite coatings have been introduced on implants and scaffolds for tissue engineering with the aim of providing more than one properties when required. In this context, titanium dioxide (TiO2) nanotubes have been shown to enhance the properties of titanium-based implants as part of nanocomposite coatings.
Collapse
|
12
|
Chen C, Song J, Qiu J, Zhao J. Repair of a Meniscal Defect in a Rabbit Model Through Use of a Thermosensitive, Injectable, In Situ Crosslinked Hydrogel With Encapsulated Bone Mesenchymal Stromal Cells and Transforming Growth Factor β1. Am J Sports Med 2020; 48:884-894. [PMID: 31967854 DOI: 10.1177/0363546519898519] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal injury repair with tissue engineering technique is promising. Among various scaffolds, the thermosensitive injectable hydrogel has recently attracted much attention. PURPOSE (1) Evaluate the biocompatibility of thermosensitive, injectable, in situ crosslinked hydrogel and (2) determine whether the hydrogel with or without transforming growth factor β1 (TGF-β1) could support the fibrochondrogenic differentiation of bone mesenchymal stromal cells (BMSCs) and promote the repair of a critical-sized defect in rabbit meniscus. STUDY DESIGN Controlled laboratory study. METHODS The rheological and sustained release properties of the hydrogel were demonstrated. BMSCs were isolated and cultured. Cell viability, quantitative polymerase chain reaction (qPCR), and Western blot were tested in vitro. In vivo, a critical-sized defect was introduced into the meniscus of 30 rabbits. Each defect was randomly assigned to be implanted with either phosphate-buffered saline (PBS); BMSC-laden hydrogel; or BMSC-laden, TGF-β1-incorporated hydrogel. Histological and immunohistochemical analyses were performed at 8 weeks after surgery. The Ishida scoring system was adopted to evaluate the healing quantitatively. RESULTS The elastic modulus of the hydrogel was about 1000 Pa. The hydrogel demonstrated a sustained-release property and could promote proliferation and induce fibrochondrogenic differentiation of BMSCs after the incorporation of TGF-β1 (P < .001). At 8 weeks after surgery, a large amount of fibrocartilaginous tissue, which was positive on safranin-O staining and expressed strong type II collagen intermingled with weak type I collagen, was observed in the defect region of the BMSC-laden, TGF-β1-incorporated hydrogel group. In the BMSC-laden hydrogel group, the defect was filled with fibrous tissue together with a small amount of fibrocartilage. The mean ± SD quantitative scores obtained for the 3 groups-PBS; BMSC-laden hydrogel; and BMSC-laden, TGF-β1-incorporated hydrogel-were 1.00, 3.20 ± 0.84, and 5.00 ± 0.71, respectively (P < .001). CONCLUSION The hydrogel was biocompatible and could stimulate strong fibrochondrogenic differentiation of BMSCs after the incorporation of TGF-β1. The local administration of the BMSC-laden, TGF-β1-incorporated hydrogel could promote the healing of rabbit meniscal injury. CLINICAL RELEVANCE This hydrogel is an alternative scaffold for meniscus tissue engineering.
Collapse
Affiliation(s)
- Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Jialin Song
- The Orthopedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayu Qiu
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms 2019; 7:microorganisms7120584. [PMID: 31756969 PMCID: PMC6955704 DOI: 10.3390/microorganisms7120584] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
Medical device-associated staphylococcal infections are a common and challenging problem. However, detailed knowledge of staphylococcal biofilm dynamics on clinically relevant surfaces is still limited. In the present study, biofilm formation of the Staphylococcus aureus ATCC 25923 strain was studied on clinically relevant materials-borosilicate glass, plexiglass, hydroxyapatite, titanium and polystyrene-at 18, 42 and 66 h. Materials with the highest surface roughness and porosity (hydroxyapatite and plexiglass) did not promote biofilm formation as efficiently as some other selected materials. Matrix-associated poly-N-acetyl-β-(1-6)-glucosamine (PNAG) was considered important in young (18 h) biofilms, whereas proteins appeared to play a more important role at later stages of biofilm development. A total of 460 proteins were identified from biofilm matrices formed on the indicated materials and time points-from which, 66 proteins were proposed to form the core surfaceome. At 18 h, the appearance of several r-proteins and glycolytic adhesive moonlighters, possibly via an autolysin (AtlA)-mediated release, was demonstrated in all materials, whereas classical surface adhesins, resistance- and virulence-associated proteins displayed greater variation in their abundances depending on the used material. Hydroxyapatite-associated biofilms were more susceptible to antibiotics than biofilms formed on titanium, but no clear correlation between the tolerance and biofilm age was observed. Thus, other factors, possibly the adhesive moonlighters, could have contributed to the observed chemotolerant phenotype. In addition, a protein-dependent matrix network was observed to be already well-established at the 18 h time point. To the best of our knowledge, this is among the first studies shedding light into matrix-associated surfaceomes of S. aureus biofilms grown on different clinically relevant materials and at different time points.
Collapse
|
14
|
Gunputh UF, Le H, Besinis A, Tredwin C, Handy RD. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus. Int J Nanomedicine 2019; 14:3583-3600. [PMID: 31190813 PMCID: PMC6529028 DOI: 10.2147/ijn.s199219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: This study aimed to decorate the surface of TiO2 nanotubes (TiO2 NTs) grown on medical grade Ti-6Al-4V alloy with an antimicrobial layer of nano zinc oxide particles (nZnO) and then determine if the antimicrobial properties were maintained with a final layer of nano-hydroxyapatite (HA) on the composite. Methods: The additions of nZnO were attempted at three different annealing temperatures: 350, 450 and 550 °C. Of these temperatures, 350°C provided the most uniform and nanoporous coating and was selected for antimicrobial testing. Results: The LIVE/DEAD assay showed that ZnCl2 and nZnO alone were >90% biocidal to the attached bacteria, and nZnO as a coating on the nanotubes resulted in around 70% biocidal activity. The lactate production assay agreed with the LIVE/DEAD assay. The concentrations of lactate produced by the attached bacteria on the surface of nZnO-coated TiO2 NTs and ZnO/HA-coated TiO2 NTs were 0.13±0.03 mM and 0.37±0.1 mM, respectively, which was significantly lower than that produced by the bacteria on TiO2 NTs alone, 1.09±0.30 mM (Kruskal–Wallis, P<0.05, n=6). These biochemical measurements were correlated with electron micrographs of cell morphology and cell coverage on the coatings. Conclusion: nZnO on TiO2 NTs was a stable and antimicrobial coating, and most of the biocidal properties remained in the presence of nano-HA on the coating.
Collapse
Affiliation(s)
- Urvashi F Gunputh
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK.,School of Engineering, Plymouth University, Plymouth PL4 8AA, UK
| | - Huirong Le
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK
| | | | - Christopher Tredwin
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK
| | - Richard D Handy
- School of Biological & Marine Sciences, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
15
|
Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv 2019; 15:1021-1037. [PMID: 30259776 DOI: 10.1080/17425247.2018.1517743] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Therapeutics delivery to bones to treat skeletal diseases or prevent postsurgical infections is challenging due to complex and solid bone structure that limits blood supply and diffusion of therapeutics administered by systemic routes to reach effective concentration. Titanium (Ti) and their alloys are employed as mainstream implant materials in orthopedics and dentistry; having superior mechanical/biocompatibility properties which could provide an alternative solution to address this problem. AREAS COVERED This review presents an overview of recent development of Ti drug-releasing implants, with emphasis on nanoengineered Titania nanotubes (TNTs) structures, for solving key problems to improve implants osseointegration, overcome inflammation and infection together with providing localized drug delivery (LDD) for bone diseases including cancer. Critical analysis of the advantages/disadvantages of developed concepts is discussed, their drug loading/releasing performances and specific applications. EXPERT OPINION LDD to bones can address many disorders and postsurgical conditions such as inflammation, implants rejection and infection. To this end, TNTs-Ti implants represent a potential promise for the development of new generation of multifunctional implants with drug release functions. Even this concept is extensively explored recently, there is a strong need for more preclinical studies using animal models to confirm the long-term safety and stability of TNTs-Ti implants for real-life medical applications.
Collapse
Affiliation(s)
- Shaheer Maher
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Arash Mazinani
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Mohammad Reza Barati
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
16
|
Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2019; 14:457-468. [PMID: 30666107 PMCID: PMC6330981 DOI: 10.2147/ijn.s193569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200082, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang 110819, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110000, China
| | - Zeming Lei
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xi Li
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
| |
Collapse
|
17
|
Lei Z, Zhang H, Zhang E, You J, Ma X, Bai X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:121-131. [DOI: 10.1016/j.msec.2018.06.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/12/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
18
|
Antibacterial and cytocompatible nanotextured Ti surface incorporating silver via single step hydrothermal processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:115-124. [DOI: 10.1016/j.msec.2017.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
|
19
|
Li S, Zhu T, Huang J, Guo Q, Chen G, Lai Y. Durable antibacterial and UV-protective Ag/TiO 2@ fabrics for sustainable biomedical application. Int J Nanomedicine 2017; 12:2593-2606. [PMID: 28408826 PMCID: PMC5383074 DOI: 10.2147/ijn.s132035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A facile method was developed to endow cotton fabric with remarkable antibacterial and ultraviolet (UV)-protective properties. The flower-like TiO2 micro-nanoparticles were first deposited onto cotton fabric surface via hydrothermal deposition method. Then, the Ag NPs with a high deposition density were evenly formed onto TiO2@cotton surface by sodium hydroxide solution pretreatment and followed by in situ reduction of ANO3. This work focused on the influence of different hydrothermal reaction durations and the concentration of AgNO3 on antibacterial activity against relevant microorganisms in medicine as well as on the UV-blocking property. Ag NPs-loaded TiO2@cotton exhibited high antibacterial activity with an inhibition rate higher than 99% against Staphylococcus aureus and Escherichia coli bacteria. Moreover, the as-prepared cotton fabric coated with Ag NPs and TiO2 NPs demonstrated outstanding UV protective ability with a high ultraviolet protection factor value of 56.39. Morphological image of the cells revealed a likely loss of viability as a result of the synergistically biocidal effects of TiO2 and Ag on attached bacteria. These results demonstrate a facile and robust synthesis technology for fabricating multifunctional textiles with a promising biocidal activity against common Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuhui Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| | - Tianxue Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| | - Jianying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| | - Qingqing Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
20
|
Miao X, Wang D, Xu L, Wang J, Zeng D, Lin S, Huang C, Liu X, Jiang X. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. Int J Nanomedicine 2017; 12:1415-1430. [PMID: 28260888 PMCID: PMC5325133 DOI: 10.2147/ijn.s126760] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanotopography modification is a major focus of interest in current titanium surface design; however, the influence of the nanostructured surface on human cell/bacterium behavior has rarely been systematically evaluated. In this study, a homogeneous nanofiber structure was prepared on a titanium surface (Nano) by alkali-hydrothermal treatment, and the effects of this Nano surface on the behaviors of human MG-63 osteoblasts, human gingival epithelial cells (HGECs) and human gingival fibroblasts (HGFs) were evaluated in comparison with a smooth titanium surface (Smooth) by polishing and a micro-rough titanium surface (Micro) by sandblasting and acid etching. In addition, the impacts of these different surface morphologies on human THP-1 macrophage polarization and Streptococcus mutans attachment were also assessed. Our findings showed that the nanostructured surface enhanced the osteogenic activity of MG-63 cells (Nano=Micro>Smooth) at the same time that it improved the attachment of HGECs (Nano>Smooth>Micro) and HGFs (Nano=Micro>Smooth). Furthermore, the surface with nanotexture did not affect macrophage polarization (Nano=Micro=Smooth), but did reduce initial bacterial adhesion (Nano
Collapse
Affiliation(s)
- Xinchao Miao
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing
| | - Lianyi Xu
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| | - Jie Wang
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| | - Deliang Zeng
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| | - Shuxian Lin
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Xinquan Jiang
- Department of Prosthodontics
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology
| |
Collapse
|