1
|
Angelopoulou A, Papachristodoulou M, Voulgari E, Mouikis A, Zygouri P, Gournis DP, Avgoustakis K. Paclitaxel-Loaded, Pegylated Carboxylic Graphene Oxide with High Colloidal Stability, Sustained, pH-Responsive Release and Strong Anticancer Effects on Lung Cancer A549 Cell Line. Pharmaceutics 2024; 16:1452. [PMID: 39598575 PMCID: PMC11597291 DOI: 10.3390/pharmaceutics16111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Graphene Oxide (GO) has shown great potential in biomedical applications for cancer therapeutics. The biosafety and stability issues of GO in biological media have been addressed by functionalization with polyethylene glycol (PEG). Methods: In this work, carboxylated, nanosized GO (nCGO) was evaluated as a potential carrier of paclitaxel (PCT). The effect of PEG characteristics on particle size and surface charge, colloidal stability, drug, and release, and the hemolytic potential of nCGO, was investigated. Optimum PEG-nCGO/PCT formulations based on the above properties were evaluated for their anticancer activity (cytotoxicity and apoptosis induction) in the A549 lung cancer cell line. Results: An increase in the length of linear PEG chains and the use of branched (4-arm) instead of linear PEG resulted in a decrease in hydrodynamic diameter and an increase in ζ potential of the pegylated nCGO particles. Pegylated nCGO exhibited high colloidal stability in phosphate-buffered saline and in cell culture media and low hemolytic effect, even at a relatively high concentration of 1 mg/mL. The molecular weight of PEG and branching adversely affected PCT loading. An increased rate of PCT release at an acidic pH of 6.0 compared to the physiological pH of 7.4 was observed with all types of pegylated nCGO/PCT. Pegylated nCGO exhibited lower cytotoxicity and apoptotic activity than non-pegylated nCGO. Cellular uptake of pegylated nCGO increased with incubation time with cells leading to increased cytotoxicity of PEG-nCGO/PCT with incubation time, which became higher than that of free PCT at 24 and 48 h of incubation. Conclusions: The increased biocompatibility of the pegylated nCGO and the enhanced anticancer activity of PEG-nCGO/PCT compared to free PCT are desirable properties with regard to the potential clinical application of PEG-nCGO/PCT as an anticancer nanomedicine.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Myria Papachristodoulou
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Efstathia Voulgari
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Andreas Mouikis
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Dimitrios P. Gournis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Institute of GeoEnergy, Foundation for Research and Technology-Hellas, 73100 Chania, Greece
| | - Konstantinos Avgoustakis
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| |
Collapse
|
2
|
Darguzyte M, Rama E, Rix A, Baier J, Hermann J, Rezvantalab S, Khedri M, Jankowski J, Kiessling F. Riboflavin-targeted polymers improve tolerance of paclitaxel while maintaining therapeutic efficacy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102751. [PMID: 38705222 DOI: 10.1016/j.nano.2024.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne, 50931 Cologne, Germany; Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), University of Cologne, 50931 Cologne, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Juliane Hermann
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN), 19839-63113 Tehran, Iran
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Ghosh PK, Rao MJ, Putta CL, Ray S, Rengan AK. Telomerase: a nexus between cancer nanotherapy and circadian rhythm. Biomater Sci 2024; 12:2259-2281. [PMID: 38596876 DOI: 10.1039/d4bm00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.0 million individuals succumbed to the disease. A typical cell eventually becomes cancerous because of a long-term buildup of genetic instability and replicative immortality. Telomerase is a crucial regulator of cancer progression as it induces replicative immortality. In cancer cells, telomerase inhibits apoptosis by elongating the length of the telomeric region, which usually protects the genome from shortening. Many nanoparticles are documented as being available for detecting the presence of telomerase, and many were used as delivery systems to transport drugs. Furthermore, telomere homeostasis is regulated by the circadian time-keeping machinery, leading to 24-hour rhythms in telomerase activity and TERT mRNA expression in mammals. This review provides a comprehensive discussion of various kinds of nanoparticles used in telomerase detection, inhibition, and multiple drug-related pathways, as well as enlightens an imperative association between circadian rhythm and telomerase activity from the perspective of nanoparticle-based anticancer therapeutics.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Maddila Jagapathi Rao
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
4
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Ma S, Wu J, Liu Z, He R, Wang Y, Liu L, Wang T, Wang W. Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication. J Pharm Anal 2023; 13:388-402. [PMID: 37181289 PMCID: PMC10173291 DOI: 10.1016/j.jpha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cell mechanics is essential to cell development and function, and its dynamics evolution reflects the physiological state of cells. Here, we investigate the dynamical mechanical properties of single cells under various drug conditions, and present two mathematical approaches to quantitatively characterizing the cell physiological state. It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate, and can be mathematically characterized by a linear time-invariant dynamical model. It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions. Furthermore, it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties, and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model. This study builds a relationship between the cellular mechanical properties and the cellular physiological state, adding information for evaluating drug efficacy.
Collapse
|
6
|
Liu Y, Xiao W, Zhang H, Xin L, Li X, Pan F. Chemotherapy drug potency assessment method of ovarian cancer cells by digital holography microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4370-4385. [PMID: 36032571 PMCID: PMC9408259 DOI: 10.1364/boe.465149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Drug potency assessment plays a crucial role in cancer chemotherapy. The selection of appropriate chemotherapy drugs can reduce the impact on the patient's physical condition and achieve a better therapeutic effect. Various methods have been used to achieve in vitro drug susceptibility assays, but there are few studies on calculating morphology and texture parameters quantitatively based on phase imaging for drug potency assessment. In this study, digital holography microscopy was used to get phase imaging of ovarian cancer cells after adding three different drugs, namely, Cisplatin, Adriamycin, and 5-fluorouracil. Based on the reconstructed phase imaging, four parameters of ovarian cancer cells changed with time, such as the average height, projected area, cluster shade, and entropy, were calculated. And the half-inhibitory concentration of cells under the effect of different drugs was calculated according to these four parameters. The half-inhibitory concentration, which can directly reflect the drug potency, is associated with the morphological and texture features extracted from phase images by numerical fitting. So, a new method for calculating the half-inhibitory concentration was proposed. The result shows that the morphological and texture feature parameters can be used to evaluate the sensitivity of ovarian cancer cells to different drugs by fitting the half-inhibitory concentration numerically. And the result provides a new idea for drug potency assessment methods before chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Yakun Liu
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Huanzhi Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Lu Xin
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Xiaoping Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
8
|
Chen X, Lin H, Chen J, Wu L, Zhu J, Ye Y, Chen S, Du H, Li J. Paclitaxel Inhibits Synoviocyte Migration and Inflammatory Mediator Production in Rheumatoid Arthritis. Front Pharmacol 2021; 12:714566. [PMID: 34566640 PMCID: PMC8458635 DOI: 10.3389/fphar.2021.714566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haofeng Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinyang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Department of Drug and Device Center, Huaxin Orthopaedic Hospital, Shantou University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed Pharmacother 2020; 130:110539. [DOI: 10.1016/j.biopha.2020.110539] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
|
10
|
Xiong K, Zhang Y, Wen Q, Luo J, Lu Y, Wu Z, Wang B, Chen Y, Zhao L, Fu S. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 2020; 589:119875. [PMID: 32919003 DOI: 10.1016/j.ijpharm.2020.119875] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Multi-drug chemotherapy has been one of the most popular strategies for the treatment of malignant tumors, and has achieved desirable therapeutic outcomes. The objective of the present study is to develop biodegradable PCEC nanoparticles (NPs) for the co-delivery of paclitaxel (PTX) and curcumin (CUR), and investigate the antitumor effect of the drug delivery system (DDS: PTX-CUR-NPs) against breast cancer both in vitro and in vivo. The prepared PTX-CUR-NPs had a small size of 27.97 ± 1.87 nm with a low polydispersity index (PDI, 0.197 ± 0.040). The results exhibited slow release of PTX and CUR from the DDS without any burst effect. Further, the PTX-CUR-NPs displayed a dose-dependent cytotoxicity in MCF-7 cells with a higher apoptosis rate (64.29% ± 1.97%) as compared to that of free drugs (PTX + CUR, 34.21% ± 0.81%). The cellular uptake study revealed that the drug loaded PCEC polymeric nanoparticles were more readily uptaken by tumor cells in vitro. To evaluate the in vivo anti-tumor effect, the PTX-CUR-NPs were intravenously administered to BALB/c nude mouse xenografted with MCF-7 cells and the results exhibited significant inhibition of tumor growth with prolonged survival time and reduced side effect when compared with free drugs (PTX + CUR). Moreover, the administration of PTX-CUR-NPs treatment led to lower Ki67 expression (p < 0.05), and enhanced TUNEL positivity (higher apoptosis, p < 0.01) in tumor cells as compared to other treatment groups, suggesting the therapeutic efficacy of the DDS. Altogether, the present study suggests that the DDS PTX-CUR-NPs could be employed for the effective treatment of breast cancers in near future.
Collapse
Affiliation(s)
- Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Zhang
- Department of Oncology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jia Luo
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|