1
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
2
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
3
|
Acevedo-Sánchez V, Martínez-Ruiz RS, Aguilar-Ruíz SR, Torres-Aguilar H, Chávez-Olmos P, Garrido E, Baltiérrez-Hoyos R, Romero-Tlalolini MDLA. Quantitative Proteomics for the Identification of Differentially Expressed Proteins in the Extracellular Vesicles of Cervical Cancer Cells. Viruses 2023; 15:702. [PMID: 36992411 PMCID: PMC10051161 DOI: 10.3390/v15030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The extracellular vesicles (EVs) in a tumoral microenvironment can exert different functions by transferring their content, which has been poorly described in cervical cancer. Here, we tried to clarify the proteomic content of these EVs, comparing those derived from cancerous HPV (+) keratinocytes (HeLa) versus those derived from normal HPV (-) keratinocytes (HaCaT). We performed a quantitative proteomic analysis, using LC-MS/MS, of the EVs from HeLa and HaCaT cell lines. The up- and downregulated proteins in the EVs from the HeLa cell line were established, along with the cellular component, molecular function, biological processes, and signaling pathways in which they participate. The biological processes with the highest number of upregulated proteins are cell adhesion, proteolysis, lipid metabolic process, and immune system processes. Interestingly, three of the top five signaling pathways with more up- and downregulated proteins are part of the immune response. Due to their content, we can infer that EVs can have a significant role in migration, invasion, metastasis, and the activation or suppression of immune system cells in cancer.
Collapse
Affiliation(s)
- Víctor Acevedo-Sánchez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico
| | - Roy S. Martínez-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico
| | - Sergio R. Aguilar-Ruíz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N, Cinco Señores, Oaxaca de Juárez 68120, Mexico
| | - Pedro Chávez-Olmos
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico
| | - Efraín Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico
| | - Rafael Baltiérrez-Hoyos
- Facultad de Medicina y Cirugía, CONACYT—Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico
| | - María de los A. Romero-Tlalolini
- Facultad de Medicina y Cirugía, CONACYT—Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, Oaxaca de Juárez 68120, Mexico
| |
Collapse
|
4
|
Liu Y, Wang J, Hu X, Pan Z, Xu T, Xu J, Jiang L, Huang P, Zhang Y, Ge M. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy. Drug Resist Updat 2023; 68:100939. [PMID: 36806005 DOI: 10.1016/j.drup.2023.100939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.
Collapse
Affiliation(s)
- Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
6
|
The sodium iodide symporter (NIS) as theranostic gene: potential role in pre-clinical therapy of extra-thyroidal malignancies. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Delcorte O, Degosserie J, Pierreux CE. Role of Extracellular Vesicles in Thyroid Physiology and Diseases: Implications for Diagnosis and Treatment. Biomedicines 2022; 10:biomedicines10102585. [PMID: 36289847 PMCID: PMC9599682 DOI: 10.3390/biomedicines10102585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability to transmit a message to surrounding or distant target cells. In several organs, including the thyroid, abundant recent literature reports that extracellular vesicles are responsible for intercellular communication in physiological and pathological processes, and that their utilization as a potential biomarker of pathological states (i.e., cancer, autoimmune diseases) or as therapeutic delivery vehicles promise clinical options. In this review, we present the current knowledge and understanding regarding the role of extracellular vesicles in developing thyroid diseases and diagnosis.
Collapse
Affiliation(s)
- Ophélie Delcorte
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence:
| | - Jonathan Degosserie
- Department of Laboratory Medicine, Molecular Diagnostic Center, CHU UCL Namur, 5530 Yvoir, Belgium
| | | |
Collapse
|
8
|
Chulpanova DS, Pukhalskaia TV, Rizvanov AA, Solovyeva VV. Contribution of Tumor-Derived Extracellular Vesicles to Malignant Transformation of Normal Cells. Bioengineering (Basel) 2022; 9:bioengineering9060245. [PMID: 35735488 PMCID: PMC9220176 DOI: 10.3390/bioengineering9060245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-cell-derived extracellular vesicles (EVs) are known to carry biologically active molecules of parental cells, which can actively modulate the tumor microenvironment. EVs produced by tumor cells play significant roles in the development and maintenance of tumor growth, metastasis, immune escape, and other important processes. However, the ability of EVs to induce the transformation of normal cells has hardly been investigated. This review discusses studies that describe the ability of tumor-cell-derived EVs to alter the metabolism and morphology of normal cells, causing changes associated with malignant transformation. Additionally, the horizontal transfer of oncogenes through EVs of tumor cells and the induction of epigenetic changes in normal cells, which leads to genomic instability and subsequent oncogenic transformation of normal cells, are also discussed.
Collapse
|
9
|
Rajendran RL, Gangadaran P, Kwack MH, Oh JM, Hong CM, Gopal A, Sung YK, Lee J, Ahn BC. Engineered extracellular vesicle mimetics from macrophage promotes hair growth in mice and promotes human hair follicle growth. Exp Cell Res 2021; 409:112887. [PMID: 34678305 DOI: 10.1016/j.yexcr.2021.112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Recent studies clearly show that cell-derived extracellular vesicles (EVs, including exosomes) can promote hair growth. However, large-scale production of EVs remains a big hurdle. Recently, extracellular vesicle mimetics (EMs) engineered by extrusion through various membranes are emerging as a complementary approach for large-scale production. In this study, to investigate their ability to induce hair growth, we generated macrophage-engineered EMs (MAC-EMs) that activated the human dermal papilla (DP) cells in vitro. MAC-EMs intradermally injected into the skin of C57BL/6 mice were retained for up to 72 h. Microscopy imaging revealed that MAC-EMs were predominately internalized into hair follicles. The MAC-EMs treatment induced hair regrowth in mice and hair shaft elongation in a human hair follicle, suggesting the potential of MAC-EMs as an alternative to EVs to overcome clinical limitation.
Collapse
Affiliation(s)
- Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hee Kwack
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kwan Sung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Nimitrungtawee N, Inmutto N, Chattipakorn SC, Chattipakorn N. Extracellular vesicles as a new hope for diagnosis and therapeutic intervention for hepatocellular carcinoma. Cancer Med 2021; 10:8253-8271. [PMID: 34708589 PMCID: PMC8633266 DOI: 10.1002/cam4.4370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer with a high mortality rate. Early diagnosis and treatment before tumor progression into an advanced stage is ideal. The current diagnosis of HCC is mainly based on imaging modalities such as ultrasound, computed tomography, and magnetic resonance imaging. These methods have some limitations including diagnosis in the case of very small tumors with atypical imaging patterns. Extracellular vesicles (EVs) are nanosized vesicles which have been shown to act as an important vector for cell-to-cell communication. In the past decade, EVs have been investigated with regard to their roles in HCC formation. Since these EVs contain biomolecular cargo such as nucleic acid, lipids, and proteins, it has been proposed that they could be a potential source of tumor biomarkers and a vector for therapeutic cargo. In this review, reports on the roles of HCC-derived EVs in tumorigenesis, and clinical investigations using circulating EVs as a biomarker for HCC and their potential diagnostic roles have been comprehensively summarized and discussed. In addition, findings from in vitro and in vivo reports investigating the potential roles of EVs as therapeutic interventions are also presented. These findings regarding the potential benefits of EVs will encourage further investigations and may allow us to devise novel strategies using EVs in the early diagnosis as well as for treatment of HCC in the future.
Collapse
Affiliation(s)
- Natthaphong Nimitrungtawee
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nakarin Inmutto
- Diagnostic Radiology UnitDepartment of RadiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
11
|
Driscoll J, Wehrkamp C, Ota Y, Thomas JN, Yan IK, Patel T. Biological Nanotherapeutics for Liver Disease. Hepatology 2021; 74:2863-2875. [PMID: 33825210 DOI: 10.1002/hep.31847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of biological nano-sized vesicles that are released from cells and contribute to intercellular communication. Emerging knowledge about their biogenesis, composition, release, and uptake has resulted in broad interest in elucidating their potential roles in disease pathophysiology. The distinct biological properties of these biological nanoparticles emphasize several appealing advantages for potential therapeutic applications compared with the use of synthetic nanoparticles. When administered systemically, EVs are taken up and sequestered within the liver, further emphasizing opportunities for therapeutic use. Consequently, there is growing interest in their use for liver diseases. EVs can be used directly as therapeutics, and several studies have highlighted the intrinsic therapeutic properties of mesenchymal stem cell-derived EVs for chronic and acute liver diseases. Alternatively, EVs can be modified to facilitate their use for the delivery of therapeutic cargo. In this review, we discuss the cellular sources of EV, provide a concise overview of their potential use in diverse processes, and outline several promising applications for the use of EV-based therapeutics for liver diseases. The use of EV-based therapeutics provides a viable approach to target hepatic pathophysiology.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Cody Wehrkamp
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Yu Ota
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | | | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
12
|
Bioengineering of Extracellular Vesicles: Exosome-Based Next-Generation Therapeutic Strategy in Cancer. Bioengineering (Basel) 2021; 8:bioengineering8100139. [PMID: 34677212 PMCID: PMC8533396 DOI: 10.3390/bioengineering8100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular nano vesicles and exosomes hold compelling evidence in intercellular communication. Exosomal intracellular signal transduction is mediated by the transfer of cargo proteins, lipids, micro (mi)RNAs, long noncoding (lnc)RNAs, small interfering (si)RNAs, DNA, and other functional molecules that play a pivotal role in regulating tumor growth and metastasis. However, emerging research trends indicate that exosomes may be used as a promising tool in anticancer treatment. This review features a majority of the bioengineering applications of fabricated exosomal cargoes. It also encompasses how the manipulation and delivery of specific cargoes-noncoding RNAs (ncRNAs), recombinant proteins, immune-modulators, chemotherapeutic drugs, and other small molecules-may serve as a precise therapeutic approach in cancer management.
Collapse
|
13
|
Guan MC, Ouyang W, Wang MD, Liang L, Li N, Fu TT, Shen F, Lau WY, Xu QR, Huang DS, Zhu H, Yang T. Biomarkers for hepatocellular carcinoma based on body fluids and feces. World J Gastrointest Oncol 2021; 13:351-365. [PMID: 34040698 PMCID: PMC8131906 DOI: 10.4251/wjgo.v13.i5.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Novel non-/minimally-invasive and effective approaches are urgently needed to supplement and improve current strategies for diagnosis and management of hepatocellular carcinoma (HCC). Overwhelming evidence from published studies on HCC has documented that multiple molecular biomarkers detected in body fluids and feces can be utilized in early-diagnosis, predicting responses to specific therapies, evaluating prognosis before or after therapy, as well as serving as novel therapeutic targets. Detection and analysis of proteins, metabolites, circulating nucleic acids, circulating tumor cells, and extracellular vesicles in body fluids (e.g., blood and urine) and gut microbiota (e.g., in feces) have excellent capabilities to improve different aspects of management of HCC. Numerous studies have been devoted in identifying more promising candidate biomarkers and therapeutic targets for diagnosis, treatment, and monitoring responses of HCC to conventional therapies, most of which may improve diagnosis and management of HCC in the future. This review aimed to summarize recent advances in utilizing these biomarkers in HCC and discuss their clinical significance.
Collapse
Affiliation(s)
- Ming-Cheng Guan
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Ouyang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital (Navy Medical University), Second Military Medical University, Shanghai 200438, China
| | - Lei Liang
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, Zhejiang Province, China
| | - Na Li
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ting-Ting Fu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital (Navy Medical University), Second Military Medical University, Shanghai 200438, China
| | - Wan-Yee Lau
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital (Navy Medical University), Second Military Medical University, Shanghai 200438, China
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiu-Ran Xu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, Zhejiang Province, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, Zhejiang Province, China
| | - Hong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital (Navy Medical University), Second Military Medical University, Shanghai 200438, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
14
|
Perumal S, Gangadaran P, Bae YW, Ahn BC, Cheong IW. Noncovalent Functionalized Graphene Nanocarriers from Graphite for Treating Thyroid Cancer Cells. ACS Biomater Sci Eng 2021; 7:2317-2328. [PMID: 33872491 DOI: 10.1021/acsbiomaterials.1c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, biocompatible graphene (G) nanocarriers decorated with iron oxide nanoparticles (IONPs) were prepared using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and poly(ethylene glycol) monomethacrylate (PEGMA). For this, we report the use of graphite directly instead of graphene oxide or reduced graphene oxide. Graphene nanocarrier (in situ GIOPMPC) was prepared in one-pot by in situ copolymerization of MPC and PEGMA monomers in the presence of IONPs and G. GIOPMCP nanocarriers were prepared by sonication using PMPC-co-PEGMA copolymers in the presence of IONPs and G. The prepared graphene nanocarriers were thoroughly characterized by various techniques. The analyses confirmed the successful preparation of nanocarriers with even distributions of PMPC-co-PEGMA and IONPs on surface G. The IONPs were coordinated through the phosphate groups in PMPC. Excellent dispersibility of the graphene nanocarriers in water enabled drug delivery applications. The prepared nanocarriers did not show significant cytotoxicity to the thyroid cancer cells up to 8 mg/mL (IC50: 38.26 mg/mL). Thyroid cancer cells were stably transduced with a bioluminescent reporter to monitor cell cytotoxicity. Doxorubicin (DOX) was loaded onto in situ GIOPMPC nanocarriers at two different concentrations and was successfully delivered to thyroid cancer cells, resulting in strong cytotoxicity. Moreover, signaling mechanistic analyses showed apoptosis activation, inhibition of anti-apoptosis and proliferation, and increased DNA damage in the thyroid cancer cells.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ye Won Bae
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - In Woo Cheong
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Radioiodine labeling and in vivo trafficking of extracellular vesicles. Sci Rep 2021; 11:5041. [PMID: 33658566 PMCID: PMC7930277 DOI: 10.1038/s41598-021-84636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Biodistribution and role of extracellular vesicles (EVs) are still largely unknown. Reliable tracking methods for EVs are needed. In this study, nuclear imaging using radioiodine were developed and applied for tracking EVs derived from cell lines. EVs were obtained from supernatant of thyroid cancer cell (Cal62) and natural killer cells (NK92-MI) using sequential ultracentrifuges. Sulfosuccinimidyl-3-(4-hydroxypheynyl) propionate were labeled to membrane of Cal62 and NK92-MI cell derived EVs, then the EVs were labeled with radioiodine (I-131 and I-125) using pre-coated iodination tubes (RI-EVs). In vivo gamma camera images were obtained after intravenous injection of the RI-EVs, and ex vivo biodistribution study was also performed. EVs were labeled with radioiodine and radiochemical purity of the RI-EV was more than 98%. Results of nanoparticle tracking analysis and electron microscopy showed that there was no significant difference in EVs before and after the radioiodine labeling. After intravenous injection of RI-EVs to mice, gamma camera imaging well visualized the real-time biodistribution of the RI-EVs. RI-EVs were mainly visualized at liver, spleen, and lung. Nuclear imaging system of EVs derived from thyroid cancer and NK cells using radioiodine labeling of the EVs was established. Thus, this system might be helpful for in vivo tracking of EVs.
Collapse
|
16
|
Castillo-Rivera F, Ondo-Méndez A, Guglielmi J, Guigonis JM, Jing L, Lindenthal S, Gonzalez A, López D, Cambien B, Pourcher T. Tumor microenvironment affects exogenous sodium/iodide symporter expression. Transl Oncol 2021; 14:100937. [PMID: 33217645 PMCID: PMC7679261 DOI: 10.1016/j.tranon.2020.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
For decades, sodium/iodide symporter NIS-mediated iodide uptake has played a crucial role in the radioactive ablation of thyroid cancer cells. NIS-based gene therapy has also become a promising tool for the treatment of tumors of extrathyroidal origin. But its applicability has been hampered by reduced expression of NIS, resulting in a moderated capacity to accumulate 131I and in inefficient ablation. Despite numerous preclinical enhancement strategies, the understanding of NIS expression within tumors remains limited. This study aims at a better understanding of the functional behavior of exogenous NIS expression in the context of malignant solid tumors that are characterized by rapid growth with an insufficient vasculature, leading to hypoxia and quiescence. Using subcutaneous HT29NIS and K7M2NIS tumors, we show that NIS-mediated uptake and NIS expression at the plasma membrane of cancer cells are impaired in the intratumoral regions. For a better understanding of the underlying molecular mechanisms induced by hypoxia and quiescence (separately and in combination), we performed experiments on HT29NIS cancer cells. Hypoxia and quiescence were both found to impair NIS-mediated uptake through mechanisms including NIS mis-localization. Modifications in the expression of proteins and metabolites involved in plasma membrane localization and in energy metabolism were found using untargeted proteomics and metabolomics approaches. In conclusion, our results provide evidence that hypoxia and quiescence impair NIS expression at the plasma membrane, and iodide uptake. Our study also shows that the tumor microenvironment is an important parameter for successful NIS-based cancer treatment.
Collapse
Affiliation(s)
- Fabio Castillo-Rivera
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota DC, Colombia
| | - Alejandro Ondo-Méndez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota DC, Colombia
| | - Julien Guglielmi
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Jean-Marie Guigonis
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Lun Jing
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Sabine Lindenthal
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Andrea Gonzalez
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia
| | - Diana López
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia; Department of Biological Science, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia
| | - Béatrice Cambien
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
| | - Thierry Pourcher
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France.
| |
Collapse
|
17
|
Rathod M, Kelkar M, Valvi S, Salve G, De A. FOXA1 Regulation Turns Benzamide HDACi Treatment Effect-Specific in BC, Promoting NIS Gene-Mediated Targeted Radioiodine Therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:93-104. [PMID: 33102692 PMCID: PMC7554325 DOI: 10.1016/j.omto.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 11/03/2022]
Abstract
Human sodium iodide symporter (NIS) gene mediated radio-ablation is a successful procedure in thyroid cancer clinics. In recent years, natural expression of NIS is reported in breast cancer (BC) cases but is yet to make its mark as a therapeutic procedure in BC clinics. A pre-exposure to histone deacetylase (HDAC) inhibitors to amplify endogenous NIS expression was attempted, but achieving cancer tissue-specific enhancement of NIS in patients is an important challenge to win. Here, for the first time, we show that a benzamide class of HDACi (bHDACi) can significantly induce NIS gene expression and function (p < 0.05) in BC cells with minimal off-target effects. Transcription factor (TF) profiler and promoter binding array reveals 22 TFs differentially activated by CI-994, of which FOXA1 is identified as a unique and positive regulator of NIS. Clonogenic assay shows reduced survival with bHDACi + 131I combination treatment. Further, AR-42 and MS-275 treatment shows enhanced NIS expression in an orthotopic breast tumor model. Combining bHDACi with 1 mCi 131I shows 40% drop in signal (p < 0.05), indicating enhanced radio-ablation effect. Cerenkov imaging revealed higher accumulation of 131I in MS-275-treated tumors. Thus, bHDACi-mediated selective enhancement ensuring minimal off-target effect is a step further toward using NIS as a therapeutic target for BC.
Collapse
Affiliation(s)
- Maitreyi Rathod
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Madhura Kelkar
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Snehal Valvi
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Girish Salve
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
18
|
Gangadaran P, Ahn BC. Extracellular Vesicle- and Extracellular Vesicle Mimetics-Based Drug Delivery Systems: New Perspectives, Challenges, and Clinical Developments. Pharmaceutics 2020; 12:pharmaceutics12050442. [PMID: 32403320 PMCID: PMC7284431 DOI: 10.3390/pharmaceutics12050442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-based nanovesicles naturally released from cells. Extracellular vesicles mimetics (EVMs) are artificial vesicles engineered from cells or in combination with lipid materials, and they mimic certain characteristics of EVs. As such, EVs facilitate intracellular communication by carrying and delivering biological materials, such as proteins, lipids, and nucleic acids, and they have been found to find organ tropism in preclinical studies. Because of their native structure and characteristics, they are considered promising drug carriers for future clinical use. This review outlines the origin and composition of natural EVs and EVM engineering and internalization. It then details different loading approaches, with examples of the drug delivery of therapeutic molecules. In addition, the advantages and disadvantages of loading drugs into EVs or EVMs as a drug delivery system are discussed. Finally, the advantages of EVMs over EVs and the future clinical translation of EVM-based drug delivery platforms are outlined.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-5583; Fax: +82-53-422-0864
| |
Collapse
|
19
|
Macrophage-Derived Extracellular Vesicle Promotes Hair Growth. Cells 2020; 9:cells9040856. [PMID: 32244824 PMCID: PMC7226775 DOI: 10.3390/cells9040856] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hair loss is a common medical problem affecting both males and females. Dermal papilla (DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients. Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b, and more than 95% were associated with their membrane. The results suggest that Wnt proteins in MAC-EVs activate the Wnt/β-catenin signaling pathways, which leads to activation of transcription factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically used as a promising novel anagen inducer in the treatment of hair loss.
Collapse
|
20
|
Extracellular Vesicles, A Possible Theranostic Platform Strategy for Hepatocellular Carcinoma-An Overview. Cancers (Basel) 2020; 12:cancers12020261. [PMID: 31973229 PMCID: PMC7072503 DOI: 10.3390/cancers12020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third highest cause of mortality from cancer, largely because of delays in diagnosis. There is currently no effective therapy for advanced stage HCC, although sorafenib, the standard treatment for HCC, systemic therapy (including tyrosine kinase inhibitors and anti-angiogenesis agents), and more recently, immunotherapy, have demonstrated some survival benefit. The measurement and modification of extracellular vesicle (EVs) cargoes—composed of nucleic acids, including miRNAs, proteins, and lipids—holds great promise for future HCC diagnosis, prognosis, and treatment. This review will provide an overview of the most recent findings regarding EVs in HCC, and the possible future use of EVs as “liquid biopsy”-based biomarkers for early diagnosis and as a vehicle for targeted drug-delivery.
Collapse
|