1
|
Wu Y, Wu J, Li L, OuYang H, Wu L, Yang C, Yuan X, Hu H, Wang Z. A gel plaster in the form of nipple cover: A comfortable and safe transdermal delivery method for mammary hyperplasia. Int J Pharm 2024; 662:124500. [PMID: 39033944 DOI: 10.1016/j.ijpharm.2024.124500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Hyperplasia of mammary glands (HMG) is considered a precancerous condition with a risk of malignant transformation, highlighting the necessity of proactive treatment in the early stages. Transdermal drug delivery offers significant advantages such as painlessness, absence of first-pass effect, and good patient compliance. However, the unique structure of the breast requires transdermal formulations for treating mammary hyperplasia to exhibit higher levels of safety and comfort. We have formulated an ancient topical formula called 'Muxiang Bing,' comprising traditional Chinese medicines Aucklandiae Radix (AR) and Rehmanniae Radix (RR), for the treatment of HMG. This formula has been transformed into a gel paster in the form of nipple cover for trans-nipple-areola delivery. In our investigations, we observed that the optimal formulation of the Muxiang gel plaster demonstrated enhanced permeation facilitated by AR's effect on RR. Furthermore, pre-treatment with the Muxiang gel plaster improved mammary tissue morphology, hormone levels, oxidative stress, aberrant cell proliferation, and damage in rat models, thus preventing and ameliorating mammary hyperplasia. The Muxiang gel plaster exhibited low skin irritability in rats, and long-term use did not cause harm to their internal organs or blood cells, indicating its safety and efficacy.
Collapse
Affiliation(s)
- Yuyi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaying Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Linzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huifa OuYang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingjiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingzhongyan Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan-Chengdu, 610106, China.
| |
Collapse
|
2
|
Li Y, Sun Q, Hao L, Shan H, Jiang Z, Wang Y, Chen Z, Zhu W, Zhao S. Liposomes Loaded with 5-Fluorouracil Can Improve the Efficacy in Pathological Scars. Int J Nanomedicine 2024; 19:7353-7365. [PMID: 39050869 PMCID: PMC11268756 DOI: 10.2147/ijn.s466221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Pathological scars, such as hypertrophic scars and keloids, are characterized by the proliferation of fibroblasts and the deposition of collagen that often cause pruritus, pain, and disfigurement. Due to their high incidence and deformity, pathological scars have resulted in severe physical and psychological trauma for patients. Intralesional injection of 5-fluorouracil (5-Fu) is a recommended option for treating pathological scars. However, the efficacy of 5-Fu injection was limited and unstable due to limited drug penetration and short retention time. Methods Liposomes are promising carriers that have advantages, such as high biocompatibility, controlled release property, and enhanced clinical efficacy. Here, we constructed a transdermal 5-Fu-loaded liposome (5-Fu-Lip) to provide a more effective and safer modality to scar treatment. Results Compared to 5-Fu, 5-Fu-Lip showed superior ability in inhibiting primary keloid fibroblasts proliferation, migration, and collagen deposition, and also significantly inhibited human umbilical vein endothelial cells (HUVECs) proliferation and microvessel construction. In vivo experiments demonstrated that 5-Fu-Lip can significantly reduce the severity of hypertrophic scars in a rabbit ear wounding model. Discussion 5-Fu-Lip provides a promising strategy to improve drug efficacy, which has great potential in the treatment of pathological scars.
Collapse
Affiliation(s)
- Yixin Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qi Sun
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Lingjia Hao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410083, People’s Republic of China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zeyu Chen
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
3
|
Ji Y, Li H, Li J, Yang G, Zhang W, Shen Y, Xu B, Liu J, Wen J, Song W. Hair Follicle-Targeted Delivery of Azelaic Acid Micro/Nanocrystals Promote the Treatment of Acne Vulgaris. Int J Nanomedicine 2024; 19:5173-5191. [PMID: 38855733 PMCID: PMC11162231 DOI: 10.2147/ijn.s459788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Acne vulgaris is a chronic inflammatory skin disorder centered on hair follicles, making hair follicle-targeted delivery of anti-acne drugs a promising option for acne treatment. However, current researches have only focused on the delivering to healthy hair follicles, which are intrinsically different from pathologically clogged hair follicles in acne vulgaris. Patients and Methods Azelaic acid (AZA) micro/nanocrystals with different particle sizes were prepared by wet media milling or high-pressure homogenization. An experiment on AZA micro/nanocrystals delivering to healthy hair follicles was carried out, with and without the use of physical enhancement techniques. More importantly, it innovatively designed an experiment, which could reveal the ability of AZA micro/nanocrystals to penetrate the constructed clogged hair follicles. The anti-inflammatory and antibacterial effects of AZA micro/nanocrystals were evaluated in vitro using a RAW264.7 cell model stimulated by lipopolysaccharide and a Cutibacterium acnes model. Finally, both the anti-acne effects and skin safety of AZA micro/nanocrystals and commercial products were compared in vivo. Results In comparison to commercial products, 200 nm and 500 nm AZA micro/nanocrystals exhibited an increased capacity to target hair follicles. In the combination group of AZA micro/nanocrystals and ultrasound, the ability to penetrate hair follicles was further remarkably enhanced (ER value up to 9.6). However, toward the clogged hair follicles, AZA micro/nanocrystals cannot easily penetrate into by themselves. Only with the help of 1% salicylic acid, AZA micro/nanocrystals had a great potential to penetrate clogged hair follicle. It was also shown that AZA micro/nanocrystals had anti-inflammatory and antibacterial effects by inhibiting pro-inflammatory factors and Cutibacterium acnes. Compared with commercial products, the combination of AZA micro/nanocrystals and ultrasound exhibited an obvious advantage in both skin safety and in vivo anti-acne therapeutic efficacy. Conclusion Hair follicle-targeted delivery of AZA micro/nanocrystals provided a satisfactory alternative in promoting the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Yan Ji
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Haorong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiguo Li
- Nanjing Miaobang Meiye Enterprise Management Co, LTD, Nanjing, People’s Republic of China
| | - Guangqiang Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, 226001, People’s Republic of China
| | - Jianping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Han W, Liu F, Muhammad M, Liu G, Li H, Xu Y, Sun S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int J Biol Macromol 2024; 272:132745. [PMID: 38823734 DOI: 10.1016/j.ijbiomac.2024.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China.
| | - Mehdi Muhammad
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China.
| |
Collapse
|
5
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
6
|
Magdy M, Elmowafy E, El-Assal MI, Ishak RA. Engineered triamcinolone acetonide loaded glycerosomes as a novel ear delivery system for the treatment of otitis media. Int J Pharm 2022; 628:122276. [DOI: 10.1016/j.ijpharm.2022.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
|
7
|
Alvarez-Figueroa MJ, Alarcón DA, González-Aramúndiz JV. Effect of zeta potential of innovative lipid nanocapsules on triamcinolone transdermal delivery. Drug Deliv Transl Res 2022; 12:2740-2750. [PMID: 35284985 DOI: 10.1007/s13346-022-01134-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Two pegylated lipid nanocapsules for triamcinolone transdermal delivery were designed. Both present a size close to 50 nm and a single monomodal distribution in particle size (PI < 0.2), with a zeta potential of - 20 ± 2 and + 18 ± 1, respectively. The triamcinolone encapsulation efficacy varied between 68 and 80%. They proved to be stable under storage conditions (4 °C) for at least 6 months and at a physiological temperature, using different media, for 48 h. Also, they were shown not to affect cell viability at the concentrations used. For ex vivo transdermal experiments, newborn pig skin was used. With respect to the triamcinolone transdermal penetration, the nanocapsules were demonstrated to have an absorption promoting effect, both when the drug nanocapsules were in solution or loaded into the hydrogel, quantifying between 2 and 15 times more absorbed drug than the control. In addition, regarding the triamcinolone retained in the skin, it is observed that lipid nanocapsules act as triamcinolone promoters when the nanosystems were in solution and when they were included in the hydrogel. This vehicle showed a greater triamcinolone reservoir effect in comparison to the nanocapsules, proving to be a good vehicle to formulate triamcinolone transdermal delivery.
Collapse
Affiliation(s)
- María Javiera Alvarez-Figueroa
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile.
| | - Diego A Alarcón
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile
| | - José Vicente González-Aramúndiz
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile. .,Centro de Investigación en Nanotecnología Y Materiales Avanzados "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Meng X, Yu Z, Xu W, Chai J, Fang S, Min P, Chen Y, Zhang Y, Zhang Z. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780. BURNS & TRAUMA 2022; 10:tkac015. [PMID: 35769829 PMCID: PMC9227726 DOI: 10.1093/burnst/tkac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Indexed: 11/19/2022]
Abstract
Background Hypertrophic scars (HS) represent one of the most common clinical challenges due to unsatisfactory therapeutic results. HS formation is associated with the abnormal activation of fibroblasts and their excessive fibrotic behavior. Glycolysis dysregulation has been shown to participate in the incidence and progression of various fibrotic diseases and shows potential as a means of controlling HS formation. This work aimed to discuss the impact of augmented glycolysis on HS and to propose a method for controlling HS formation through glycolysis regulation. Methods Here, augmented glycolysis was confirmed together with enhanced fibrotic activity in both HS fibroblasts (HFs) and HS tissues, and the suppression of glycolysis also attenuated fibroblast activation. We also introduced IR780, a heptamethine cyanine dye, to regulate glycolysis for the control of HS formation. Results In vitro, cell studies indicated that IR780 significantly down-regulated glycolysis and suppressed the fibrotic activity of HFs. In vivo, the intralesional injection of IR780 into rabbit HS models led to the downregulation of glycolysis and the control of HS formation. Furthermore, IR780 accumulated preferentially in activated fibroblasts in both in vitro and in vivo studies, and thus specifically downregulated glycolysis and efficiently controlled fibrosis by targeting activated fibroblasts. Conclusions This work identified a strategy for controlling fibrosis and HS formation from the perspective of glycolysis regulation with IR780 targeting of activated fibroblasts.
Collapse
Affiliation(s)
- Xinxian Meng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Zhixi Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Wanyu Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Jun Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Shuo Fang
- Department of Plastic and Reconstruction, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China
| |
Collapse
|
9
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
10
|
Uchida N, Yanagi M, Hamada H. Physical Enhancement? Nanocarrier? Current Progress in Transdermal Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:335. [PMID: 33525364 PMCID: PMC7911274 DOI: 10.3390/nano11020335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
A transdermal drug delivery system (TDDS) is a method that provides drug adsorption via the skin. TDDS could replace conventional oral administration and blood administration because it is easily accessible. However, it is still difficult to design efficient TDDS due to the high barrier property of skin covered with stratum corneum, which inhibits the permeation of drug molecules. Thus far, TDDS methods by applying physical stimuli such as microneedles and chemical stimuli such as surfactants have been actively developed. However, it has been hard to avoid inflammation at the administration site because these methods partially destroy the skin tissue. On the other hand, TDDS with nanocarriers minimizing damage to the skin tissues has emerged together with the development of nanotechnology in recent years. This review focuses on current trends in TDDS.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai Kita, Okayama 700-0005, Japan;
| |
Collapse
|
11
|
Alimardani V, Abolmaali SS, Yousefi G, Rahiminezhad Z, Abedi M, Tamaddon A, Ahadian S. Microneedle Arrays Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J Clin Med 2021; 10:E181. [PMID: 33419118 PMCID: PMC7825522 DOI: 10.3390/jcm10020181] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs' challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Alimohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|