1
|
Zuo R, Kong L, Pang W, Jiang S. Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal. Int J Pharm X 2024; 7:100241. [PMID: 38572023 PMCID: PMC10987322 DOI: 10.1016/j.ijpx.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Lingqing Kong
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wanjun Pang
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
2
|
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnology 2024; 22:24. [PMID: 38191388 PMCID: PMC10775472 DOI: 10.1186/s12951-023-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The iron oxide nanoparticles (IONPs), possessing both magnetic behavior and semiconductor property, have been extensively used in multifunctional biomedical fields due to their biocompatible, biodegradable and low toxicity, such as anticancer, antibacterial, cell labelling activities. Nevertheless, there are few IONPs in clinical use at present. Some IONPs approved for clinical use have been withdrawn due to insufficient understanding of its biomedical applications. Therefore, a systematic summary of IONPs' preparation and biomedical applications is crucial for the next step of entering clinical practice from experimental stage. This review summarized the existing research in the past decade on the biological interaction of IONPs with animal/cells models, and their clinical applications in human. This review aims to provide cutting-edge knowledge involved with IONPs' biological effects in vivo and in vitro, and improve their smarter design and application in biomedical research and clinic trials.
Collapse
Affiliation(s)
- Yu Qing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Nan Shi
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai, Shandong, China
| | - Yong Ping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Qing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Wei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Dan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Salave S, Patel P, Desai N, Rana D, Benival D, Khunt D, Thanawuth K, Prajapati BG, Sriamornsak P. Recent advances in dosage form design for the elderly: a review. Expert Opin Drug Deliv 2023; 20:1553-1571. [PMID: 37978899 DOI: 10.1080/17425247.2023.2286368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION With the increase in the elderly population and the prevalence of multiple medical conditions, medication adherence, and efficacy have become crucial for the effective management of their health. The aging population faces unique challenges that need to be addressed through advancements in drug delivery systems and formulation technologies. AREAS COVERED The current review highlights the recent advances in dosage form design for older individuals, with consideration of their specific physiological and cognitive changes. Various dosage forms, such as modified-release tablets/capsules, chewable tablets, and transdermal patches, can be tailored to meet the specific needs of elderly patients. Advancements in drug delivery systems, such as nanotherapeutics, additive manufacturing (three-dimensional printing), and drug-food combinations, improve drug delivery and efficacy and overcome challenges, such as dysphagia and medication adherence. EXPERT OPINION Regulatory guidelines and considerations are crucial in ensuring the safe utilization of medications among older adults. Important factors to consider include geriatric-specific guidelines, safety considerations, labeling requirements, clinical trial considerations, and adherence and accessibility considerations.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Pranav Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gandhinagar, Gujarat, India
| | | | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
| | - Pornsak Sriamornsak
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
da Silva ACC, de Almeida RR, Vidal CS, Neto JFC, da Cruz Sousa AC, Martínez FNA, Pinheiro DP, Sales SLA, Pessoa C, Denardin JC, de Morais SM, Ricardo NMPS. Sulfated xyloglucan-based magnetic nanocomposite for preliminary evaluation of theranostic potential. Int J Biol Macromol 2022; 216:520-527. [PMID: 35803410 DOI: 10.1016/j.ijbiomac.2022.06.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Aiêrta Cristina Carrá da Silva
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - Raimundo Rafael de Almeida
- Federal Institute of Education, Science and Technology of Ceará, Campus Camocim, Zip Code 62400-000 Camocim, CE, Brazil
| | - Cristine Soares Vidal
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - João Francisco Câmara Neto
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - Alexandre Carreira da Cruz Sousa
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | | | - Daniel Pascoalino Pinheiro
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Sarah Leyenne Alves Sales
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Juliano Casagrande Denardin
- University of Santiago of Chile and Cedenna, USACH-CEDENNA, Department of Physics, Zip Code 9170124 Santiago, Chile
| | - Selene Maia de Morais
- Laboratory of Natural Products, Science and Technology Center, Ceará State University, Campus of Itaperi, Zip Code 60714-903 Fortaleza, CE, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry. MATERIALS 2022; 15:ma15062121. [PMID: 35329574 PMCID: PMC8948936 DOI: 10.3390/ma15062121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFe2O4 nanoparticles. The liver, lung, spleen, kidneys, and heart and a blood sample were collected for biodistribution analysis and, for elimination analysis, and over 60 days. During the period analyzed, the animal’s feces were also collectedd. It was possible to notice a higher uptake by the liver and the spleen due to their characteristics of retention and uptake. In 60 days, we observed an absence of MNPs in the spleen and a significant decay in the liver. We also determined the MNPs’ half-life through the liver and the spleen elimination. The data indicated a concentration decay profile over the 60 days, which suggests that, in addition to elimination via feces, there is an endogenous mechanism of metabolization or possible agglomeration of MNPs, resulting in loss of ACB signal intensity.
Collapse
|
6
|
Hunt NJ, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Opportunities and Challenges for Nanotherapeutics for the Aging Population. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.832524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotherapeutics utilize the properties of nanomaterials to alter the pharmacology of the drugs and therapies being transported, leading to changes in their biological disposition (absorption, distribution, cellular uptake, metabolism and elimination) and ultimately, their pharmacological effect. This provides an opportunity to optimize the pharmacology of drugs, particularly for those that are dependent on hepatic action. Old age is associated with changes in many pharmacokinetic processes which tend to impair drug efficacy and increase risk of toxicity. While these age-related changes are drug-specific they could be directly addressed using nanotechnology and precision targeting. The benefits of nanotherapeutics needs to be balanced against toxicity, with future use in humans dependent upon the gathering of information about the clearance and long-term safety of nanomaterials.
Collapse
|
7
|
Gadzhimagomedova Z, Polyakov V, Pankin I, Butova V, Kirsanova D, Soldatov M, Khodakova D, Goncharova A, Mukhanova E, Belanova A, Maksimov A, Soldatov A. BaGdF 5 Nanophosphors Doped with Different Concentrations of Eu 3+ for Application in X-ray Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms222313040. [PMID: 34884843 PMCID: PMC8657490 DOI: 10.3390/ijms222313040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
X-ray photodynamic therapy (XPDT) has been recently considered as an efficient alternative to conventional radiotherapy of malignant tissues. Nanocomposites for XPDT typically consist of two components—a nanophosphor which re-emits X-rays into visible light that in turn is absorbed by the second component, a photosensitizer, for further generation of reactive oxygen species. In this study, BaGdF5 nanophosphors doped with different Eu:Gd ratios in the range from 0.01 to 0.50 were synthesized by the microwave route. According to transmission electron microscopy (TEM), the average size of nanophosphors was ~12 nm. Furthermore, different coatings with amorphous SiO2 and citrates were systematically studied. Micro-CT imaging demonstrated superior X-ray attenuation and sufficient contrast in the liver and the spleen after intravenous injection of citric acid-coated nanoparticles. In case of the SiO2 surface, post-treatment core–shell morphology was verified via TEM and the possibility of tunable shell size was reported. Nitrogen adsorption/desorption analysis revealed mesoporous SiO2 formation characterized by the slit-shaped type of pores that should be accessible for methylene blue photosensitizer molecules. It was shown that SiO2 coating subsequently facilitates methylene blue conjugation and results in the formation of the BaGdF5: 10% Eu3+@SiO2@MB nanocomposite as a promising candidate for application in XPDT.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
- Correspondence:
| | - Vladimir Polyakov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Ilia Pankin
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Vera Butova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Mikhail Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| | - Darya Khodakova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Anna Goncharova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Elizaveta Mukhanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
- Faculty of Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Anna Belanova
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Aleksey Maksimov
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.); (A.M.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.P.); (I.P.); (V.B.); (D.K.); (M.S.); (E.M.); (A.S.)
| |
Collapse
|
8
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
9
|
Fontana F, Bartolo R, Santos HA. Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:135-162. [PMID: 33543459 DOI: 10.1007/978-3-030-58174-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the last 20+ years, research into the biomedical application of nanotechnology has helped in reshaping cancer treatment. The clinical use of several passively targeted nanosystems resulted in improved quality of care for patients. However, the therapeutic efficacy of these systems is not superior to the original drugs. Moreover, despite extensive investigations into actively targeted nanocarriers, numerous barriers still remain before their successful clinical translation, including sufficient bloodstream circulation time and efficient tumor targeting. The combination of synthetic nanomaterials with biological elements (e.g., cells, cell membranes, and macromolecules) is presently the cutting-edge research in cancer nanotechnology. The features provided by the biological moieties render the particles with prolonged bloodstream circulation time and homotopic targeting to the tumor site. Moreover, cancer cell membranes serve as sources of neoantigens, useful in the formulation of nanovaccines. In this chapter, we will discuss the advantages of biohybrid nanosystems in cancer chemotherapy, immunotherapy, and combined therapy, as well as highlight their preparation methods and clinical translatability.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raquél Bartolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Fahmy HM, Abd El-Daim TM, Ali OA, Hassan AA, Mohammed FF, Fathy MM. Surface modifications affect iron oxide nanoparticles' biodistribution after multiple-dose administration in rats. J Biochem Mol Toxicol 2020; 35:e22671. [PMID: 33295111 DOI: 10.1002/jbt.22671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess many utilizable physical and chemical properties and have an acceptable level of biocompatibility. Therefore, they are extensively used in different medical applications. Hence, the challenge is to modify the surfaces of prepared iron oxide nanoformulations with a biocompatible coat to enhance their biosafety. In this study, different formulations of IONPs with different capping agents (citrate [Cit-IONPs], curcumin [Cur-IONPs], and chitosan [CS-IONPs]) were prepared and characterized using various physicochemical techniques. The biodistribution of iron and the histopathology of affected tissues were assessed after Cit-IONPs, Cur-IONPs, CS-IONPs, and commercial ferrous sulfate were orally administered to adult female Wistar rats for 10 consecutive days at a dose of 4 mg/kg of body weight/day. The results were compared with a control group injected orally with saline. The iron content in the kidneys, liver, and spleen was measured by atomic absorption spectroscopy. Histopathological alterations were also examined. The biodistribution results demonstrate that iron accumulated mainly in the liver tissue, whereas the lowest liver accumulation was observed after the administration of Cit-IONPs or CS-IONPs, respectively. In contrast, the administration of CS-IONPs displayed the highest spleen iron accumulation. The ferrous sulfate (FeSO4 )-treated group showed the highest kidney iron accumulation as compared with the other groups. The histopathological examination revealed that signs of toxicity were predominant for groups treated with Cit-IONPs or commercial FeSO4 . However, Cur-IONPs and CS-IONPs showed mild toxicity when administered at the same doses. The results obtained in the present study will provide insights into the expected in vivo effects after administration of each nanoformulation.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Omnia A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa A Hassan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary Medicine, Giza, Egypt
| | - Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|