1
|
Tan ZF, Zhao GH, Zhou DY, Shao ZW, Song L. Glycation-mediated pea protein isolate-curcumin conjugates for uniform walnut oil dispersion: enhancing oxidative stability and shelf life. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39831351 DOI: 10.1002/jsfa.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Traditional methods for fabricating protein-polyphenol conjugates have not preserved the structural and functional integrity essential for the food industry effectively. This research introduces an advanced encapsulation methodology designed to overcome these limitations, with the potential to enhance the stability of edible oil matrices significantly, leading to improved preservation techniques and extended shelf life. RESULTS Glycated pea protein isolate-curcumin conjugates (gPPI-CUR) were developed, demonstrating a marked improvement in the oxidative stability of walnut oil (WO), a proxy for edible oil matrices. Characterized by a Z-average diameter of 158.37 nm and an encapsulation efficiency of 80.94%, these conjugates demonstrated exceptional performance in reducing lipid oxidation and aldehyde formation. Molecular docking analysis confirmed the formation of robust bonds with curcumin, thereby amplifying antioxidant activity. The uniform distribution of gPPI-CUR throughout the walnut oil matrix, as validated by confocal microscopy, ensured sustained bioactivity and mitigated the risk of localized oxidation. Electron spin resonance spectroscopy corroborated the superior antioxidant properties of the conjugates, which translated into a substantial 19-day increase in the shelf-life of the oil. CONCLUSION The gPPI-CUR conjugates enhanced the oxidative stability of walnut oil significantly, as demonstrated by the increased shelf life and reduced lipid oxidation. This study introduced an effective encapsulation method that improved the stability and extended the shelf life of edible oils, aligning with consumer demands for high-nutrition food products. The results indicate that the gPPI-CUR conjugates could serve as a promising antioxidant strategy for food preservation, offering a practical approach to enhance food quality and safety. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Feng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guan-Hua Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co., Ltd., Qingdao, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Koshy RR, K V, Reghunadhan A, Mary SK, Koshy JT, D S, Williams PG, Pothan LA. Biofilms from poly-vinyl alcohol/palmyra root sprout with Boswellia serrata, carbon dots and anthocyanin for sensing the freshness of sardine fish. Int J Biol Macromol 2024; 273:132991. [PMID: 38862048 DOI: 10.1016/j.ijbiomac.2024.132991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
One of the main issues that customers worldwide have is food adulteration. In commercial packages, freshness cannot always be determined visually. Here, we propose sensitive films for use in food packaging that could alter colour to indicate a change in freshness. Hybrid, multifunctional, and eco-friendly films were prepared from polyvinyl alcohol/palmyra root sprout (PVA/PRS), fused with soy protein isolate carbon dot (CD), Boswellia serrata (BS), and Clitoriaternatea anthocyanin (CTE). The films showed pH sensitivity, antioxidant, and UV barrier properties. By creating hydrogen bonds between PRS and the other fillers, adding these substances makes PVA less crystallized. These interactions were verified by infrared Fourier-transform analysis. When compared to PVA, PRS films had significantly lower moisture content and swelling ratios. The UV-blocking capabilities of the films were greatly improved by the addition of CD, BS, and CTE without compromising their mechanical, thermal, or water vapor barrier properties. The composite film PVA/PRS/CD/BS/CTE exhibited a maximum tensile strength value of 69.47 ± 1.49 MPa. The CT extract provides the film with superior antioxidant properties. The colorimetric films PVA/PRS/CTE and PVA/PRS/CD/BS/CTE showed distinct pH-responsive colour-change properties as well as good colour stability. The colorimetric films were used to test the freshness of sardine fish, and they revealed unique colour changes that indicated whether the fish sample was spoiled or not.
Collapse
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara, Kerala 690110, India.
| | - Vishnu K
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara, Kerala 690110, India
| | - Arunima Reghunadhan
- Department of Chemistry, TKM College of Engineering, Karicode, Kollam, Kerala 691005, India
| | - Siji K Mary
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara, Kerala 690110, India
| | - Jijo Thomas Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Sangeetha D
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Prakash G Williams
- Department of Botany and Biotechnology, Bishop Moore College, University of Kerala, Mavelikara, Kerala 690110, India
| | - Laly A Pothan
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara, Kerala 690110, India.
| |
Collapse
|
3
|
Chen G, Wang K, Chen P, Cai D, Shao Y, Xia R, Li C, Wang H, Ren F, Cheng X, Yu Y. Fully Biodegradable Packaging Films for Fresh Food Storage Based on Oil-Infused Bacterial Cellulose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400826. [PMID: 38569510 PMCID: PMC11187918 DOI: 10.1002/advs.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Fully biodegradable packaging materials are demanded to resolve the issue of plastic pollution. However, the fresh food storage performance of biodegradable materials is generally much lower than that of plastics due to their high permeability, microbial friendliness, and limited stretchability and transparency. Here a biodegradable packaging material is reported with high fresh food storage performance based on an oil-infused bacterial cellulose (OBC) porous film. The oil infusion significantly improved cellulose's food-keeping performance by reducing its gas permeability, increasing its stretchability and transparency, and enabling the active release of green vapor-phase preservative molecules, while maintaining its intrinsically high degradability. Strawberries stored in a container with the OBC lid at 23 °C after 5 days exhibited a moldy rate of 0%, in contrast to the 100% moldy rate of those stored by poly(ethylene). Enhanced storage performance is also obtained on tomatoes, pork, and shrimp. The OBC film is naturally degraded after being buried in wet soil at 30 °C for 9 days, identical to the degradation rate of bacterial cellulose. The liquid seal strategy broadly applies to different celluloses, providing a general option for developing cellulose-based biodegradable packaging materials.
Collapse
Affiliation(s)
- Guoli Chen
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Kaimin Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Pinghang Chen
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Daohang Cai
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Yan Shao
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Rui Xia
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Chun Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Haochuan Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Fuzeng Ren
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xing Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Yanhao Yu
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Institute of Innovative MaterialsSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
4
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Xie Q, Liu X, Zhang Y, Liu G. Development and characterization of a new potato starch/watermelon peel pectin composite film loaded with TiO 2 nanoparticles and microencapsulated Lycium barbarum leaf flavonoids and its use in the Tan mutton packaging. Int J Biol Macromol 2023; 252:126532. [PMID: 37634783 DOI: 10.1016/j.ijbiomac.2023.126532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Reinforced edible film with active nanoparticles has been in increasing demand as a new technology to improve the quality and extend the shelf-life of muscle foods. The study aimed to fabricate and characterize a novel potato starch (Pst)/watermelon peel pectin (Wpp) composite film with the microencapsulated Lycium barbarum leaf flavonoids (MLF) and nano-TiO2 (Pst/Wpp/MLF/TiO2) and further apply the film in Tan mutton preservation. The moisture content, thickness and water vapor permeability (WVP) of the composite film were relatively increased with increasing the percentage of MLF, while nano-TiO2 had slight influence on the thickness, but leaded to a significantly decreased the moisture content and WVP. Also, the SEM images showed that the roughness and porosity were created on the film surface by adding MLF and nano-TiO2. FTIR revealed electrostatic and hydrogen bond interactions between the components in the film system. Meanwhile, MLF and nano-TiO2 effectively enhanced the mechanical strength, UV-barrier, controlled-release, thermal stability, antimicrobial and antioxidation properties of the Pst/Wpp film. Also, the composite film containing MLF and nano-TiO2 significantly inhibited the growth of microorganisms and chemical deterioration of mutton samples, which suggested that such film has potential as a prospective active packaging for preserving Tan mutton.
Collapse
Affiliation(s)
- Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuexia Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
6
|
Nikmanesh A, Baghaei H, Mohammadi Nafchi A. Development and Characterization of Antioxidant and Antibacterial Films Based on Potato Starch Incorporating Viola odorata Extract to Improve the Oxidative and Microbiological Quality of Chicken Fillets during Refrigerated Storage. Foods 2023; 12:2955. [PMID: 37569224 PMCID: PMC10418992 DOI: 10.3390/foods12152955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, the antioxidant and antibacterial activities of active films based on potato starch containing Viola odorata extract (VOE) were investigated both in vitro and in chicken fillets. The VOE was added to the starch film formulation at 0, 1, 2, and 3% (w/v). The results showed that by increasing the extract level, the total phenol content and antioxidant and antibacterial activity of the films against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium improved remarkably. The results of the meat tests indicated the significant antioxidant and antimicrobial activity of active films containing different levels of VOE in chicken fillets, and a direct relationship was observed between the concentration of the extract and the functional activity of the films, so with the increase in the concentration of the extract in the films, the rate of lipid oxidation and growth of microorganisms in the chicken fillets decreased significantly during the storage period, and less volatile nitrogen bases, metmyoglobin, and oxidation products were produced in the fillets. In general, the results of this research demonstrated that an active film based on potato starch containing VOE (especially 2 and 3% levels) has the ability to extend the oxidative and microbiological shelf life of chicken fillets during cold storage for at least eight days.
Collapse
Affiliation(s)
- Ali Nikmanesh
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
7
|
Younis AB, Milosavljevic V, Fialova T, Smerkova K, Michalkova H, Svec P, Antal P, Kopel P, Adam V, Zurek L, Dolezelikova K. Synthesis and characterization of TiO 2 nanoparticles combined with geraniol and their synergistic antibacterial activity. BMC Microbiol 2023; 23:207. [PMID: 37528354 PMCID: PMC10394861 DOI: 10.1186/s12866-023-02955-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.
Collapse
Affiliation(s)
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Peter Antal
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
8
|
Bagher Abiri A, Baghaei H, Mohammadi Nafchi A. Preparation and Application of Active Bionanocomposite Films Based on Sago Starch Reinforced with a Combination of TiO 2 Nanoparticles and Penganum harmala Extract for Preserving Chicken Fillets. Polymers (Basel) 2023; 15:2889. [PMID: 37447533 DOI: 10.3390/polym15132889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to develop sago starch-based bionanocomposite films containing TiO2 nanoparticles and Penganum harmala extract (PE) to increase the shelf life of chicken fillets. First, sago starch films containing different levels of TiO2 nanoparticles (1, 3, and 5%) and PE (5, 10, and 15%) were prepared. The barrier properties and antibacterial activity of the films against different bacteria strains were investigated. Then, the produced films were used for the chicken fillets packaging, and the physicochemical and antimicrobial properties of fillets were estimated during 12-day storage at 4 °C. The results showed that the addition of nano TiO2 and PE in the films increased the antibacterial activity against gram-positive (S. aureus) higher than gram-negative (E. coli) bacteria. The water vapor permeability of the films decreased from 2.9 to 1.26 (×10-11 g/m·s·Pa) by incorporating both PE and nano TiO2. Synergistic effects of PE and nano TiO2 significantly decreased the oxygen permeability of the sago starch films from 8.17 to 4.44 (cc.mil/m2·day). Application results of bionanocomposite films for chicken fillet storage at 4 °C for 12 days demonstrated that the films have great potential to increase the shelf life of fillets. The total volatile basic nitrogen (TVB-N) of chicken fillets increased from 7.34 to 35.28 after 12 days, whereas samples coated with bionanocomposite films increased from 7.34 to 16.4. For other physicochemical and microbiological properties of chicken fillets, similar improvement was observed during cold storage. It means that the bionanocomposite films could successfully improve the shelf life of the chicken fillets by at least eight days compared to the control sample.
Collapse
Affiliation(s)
- Alireza Bagher Abiri
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
9
|
Koshy RR, K. Mary S, Reghunadhan A, Dalvi YB, Kailas L, Cordeiro N, Thomas S, A. Pothen L. Tissue Engineering Scaffold Material with Enhanced Cell Adhesion and Angiogenesis from Soy Protein Isolate Loaded with Bio Modulated Micro-TiO 2 Prepared via Prolonged Sonication for Wound Healing Applications. ACS Biomater Sci Eng 2022; 8:4896-4908. [DOI: 10.1021/acsbiomaterials.2c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara - 690101, Kerala, India
- Department of Chemistry, CMS College, M G University, Kottayam - 686001, Kerala, India
| | - Siji K. Mary
- Postgraduate and Research Department of Chemistry, Bishop Moore College, University of Kerala, Mavelikara - 690101, Kerala, India
- Department of Chemistry, CMS College, M G University, Kottayam - 686001, Kerala, India
| | - Arunima Reghunadhan
- Department of Chemistry, TKM College of Engineering, Karicode, Kollam - 691005, Kerala, India
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala689101, India
| | - Lekshmi Kailas
- School of Physics and Astronomy, University of Leeds, LS2 9JTLondon, United Kingdom
| | - Nereida Cordeiro
- Faculty of Science and Engineering, University of Madeira, 9000-390Funchal, Portugal
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, P.D. Hills P.O., Kottayam, Kerala - 686560, India
| | - Laly A. Pothen
- Department of Chemistry, CMS College, M G University, Kottayam - 686001, Kerala, India
| |
Collapse
|
10
|
Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1860. [PMID: 36205103 DOI: 10.1002/wnan.1860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Almotasem Bellah Younis
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| |
Collapse
|
11
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
12
|
Huang X, Zhou X, Dai Q, Qin Z. Antibacterial, Antioxidation, UV-Blocking, and Biodegradable Soy Protein Isolate Food Packaging Film with Mangosteen Peel Extract and ZnO Nanoparticles. NANOMATERIALS 2021; 11:nano11123337. [PMID: 34947684 PMCID: PMC8707035 DOI: 10.3390/nano11123337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.
Collapse
Affiliation(s)
- Xi Huang
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Xin Zhou
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Qingyin Dai
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
| | - Zhiyong Qin
- School of Resources, Environment, and Materials, Guangxi University, Nanning 530000, China; (X.H.); (X.Z.); (Q.D.)
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Nanning 530000, China
- Correspondence: ; Tel.: +86-182-7710-5246
| |
Collapse
|
13
|
Rabbani M, Pezeshki A, Ahmadi R, Mohammadi M, Tabibiazar M, Ahmadzadeh Nobari Azar F, Ghorbani M. Phytosomal nanocarriers for encapsulation and delivery of resveratrol- Preparation, characterization, and application in mayonnaise. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Daliri H, Ahmadi R, Pezeshki A, Hamishehkar H, Mohammadi M, Beyrami H, Khakbaz Heshmati M, Ghorbani M. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Chang X, Hou Y, Liu Q, Hu Z, Xie Q, Shan Y, Li G, Ding S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106846] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Youssef AM, El-Sayed HS, El-Nagar I, El-Sayed SM. Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv 2021; 11:22571-22584. [PMID: 35480459 PMCID: PMC9034308 DOI: 10.1039/d1ra03819b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/19/2021] [Indexed: 01/11/2023] Open
Abstract
In this paper we describe the preparation of a new bionanocomposite based on carboxymethyl cellulose (CMC), Arabic gum (AG) and gelatin (GL), incorporating garlic extract (GE) and TiO2 nanoparticles (TiO2-NPs). The prepared bionanocomposites were evaluated using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-ray Analysis (EDX), and scanning electron microscopy (SEM), and were evaluated for their antimicrobial effect. The permeability and thermal and mechanical properties of the films were assessed. The water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and mechanical, thermal and antimicrobial properties of the prepared bionanocomposite films were enhanced by the addition of GE and TiO2-NPs. The effects of GE and TiO2-NPs in combination incorporated into a CMC/AG/GL blend as an edible coating on the quality of fresh Nile tilapia fish fillets during refrigerated storage were evaluated. The microbiological status and weight loss of fresh Nile tilapia fish fillets were periodically tested for 21 days during storage at 4 °C. The results indicated that GE combined with TiO2-NPs has a synergistic influence on the enhancement of the preservation properties of CMC/AG/GL/GE–TiO2 bionanocomposites for refrigerated tilapia fish fillets, which could control microbial growth, and decrease weight loss during the storage of tilapia fish fillets. In current work a new bionanocomposite based on carboxymethyl cellulose, Arabic gum and gelatin, incorporating garlic extract and TiO2 nanoparticles as an edible coating for preserving the fresh Nile tilapia fish fillets during cold storage.![]()
Collapse
Affiliation(s)
- Ahmed M Youssef
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Hoda S El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| | - Islam El-Nagar
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| |
Collapse
|
17
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
18
|
Shahvalizadeh R, Ahmadi R, Davandeh I, Pezeshki A, Seyed Moslemi SA, Karimi S, Rahimi M, Hamishehkar H, Mohammadi M. Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles - Microstructural, mechanical, thermo-physical, and barrier properties. Food Chem 2021; 354:129492. [PMID: 33756322 DOI: 10.1016/j.foodchem.2021.129492] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/23/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
Gelatin and tragacanth were employed to fabricate antimicrobial nanocomposites with 1, 3, and 5% zinc oxide nanoparticles (ZnO-NPs). FT-IR and XRD proved new chemical interactions among GEL/TGC/ZnO-NPs and higher crystallinity of nanocomposites, respectively. DSC showed a significant increase in melting point temperature (Tm) from ~ 90 to ~ 93-101 °C after adding 1-5% ZnO-NPs. Ultimate tensile strength (UTS) was remarkably increased to 31.21, 34.57, and 35.06 MPa, as well as Young's Modulus to 287.44, 335.47, and 367.04 MPa after incorporating 1, 3, and 5% ZnO-NPs. The ZnO-NPs dose-dependently reduced the water vapor permeability (WVP) of the films. FE-SEM analysis from surface and cross-section illustrated the compact and homogenous structure of the nanocomposites even up to 5% ZnO-NPs. The ZnO-NPs-containing nanocomposites had a good antimicrobial activity (~10-20 mm) against both Staphylococcus aureus and Escherichia coli. Generally, the results indicated that the prepared nanocomposite films are promising antimicrobial bio-materials for food packaging.
Collapse
Affiliation(s)
- Rahim Shahvalizadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raman Ahmadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iskandar Davandeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akram Pezeshki
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Amir Seyed Moslemi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sanaz Karimi
- Department of Food Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahdi Rahimi
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Use of Titanium Dioxide (TiO2) Nanoparticles as Reinforcement Agent of Polysaccharide-Based Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8111395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, a strong interest has emerged in polysaccharide-hybrid composites and their potential applications, which have interesting functional and technological properties. This review summarizes and discusses the reported advantages and limitations of the functionalization of conventional and nonconventional polysaccharides by adding TiO2 nanoparticles as a reinforcement agent. Their effects on the mechanical, thermal, and UV-barrier properties as well as their water-resistance are discussed. In general, the polysaccharide–TiO2 hybrid materials showed improved physicochemical properties in a TiO2 content-dependent response. It showed antimicrobial activity against bacteria (gram-negative and gram-positive), yeasts, and molds with enhanced UV-protective effects for food and non-food packaging purposes. The reported applications of functionalized polysaccharide–TiO2 composites include photocatalysts (dye removal from aqueous media and water purification), biomedical (wound-healing material, drug delivery systems, biosensor, and tissue engineering), food preservation (fruits and meat), cosmetics (sunscreen and bleaching tooth treatment), textile (cotton fabric self-cleaning), and dye-sensitized solar cells. Furthermore, the polysaccharide–TiO2 showed high biocompatibility without adverse effects on different cell lines, indicating that their use in food, pharmaceutical, and biomedical applications is safe. However, it is necessary to evaluate the structural changes promoted by the storage conditions (time and temperature) on the physicochemical properties of polysaccharide–TiO2 hybrid composites to guarantee their stability during a determined time.
Collapse
|
20
|
Study on Biodegradable Chitosan-Whey Protein-Based Film Containing Bionanocomposite TiO2 and Zataria multiflora Essential Oil. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8844167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In our research, a composite film of whey protein isolate (WPI)/chitosan incorporated with TiO2 nanoparticles (NPs) and essential oil of Zataria multiflora (ZEO) was developed. The resulting composite films were evaluated by FTIR, SEM, and XRD, and also the physicochemical characteristics including color, mechanical properties, swelling ratio, and water vapor permeability (WVP) were studied. SEM graphs exhibited that the samples had a uniform and homogeneous structure where TiO2 NPs and ZEO were well dispersed. FTIR and XRD findings also show that the hydrogen bonds and hydrophobic interactions are the main interactions between the composite WPI/chitosan and TiO2. The crystalline nature of the composite samples increased with the increase of NP content. Nevertheless, ZEO had an insignificant effect on the functional groups and the crystallinity of composite samples. The film visual characterization revealed that, by adding and increasing the TiO2 and TiO2-ZEO, sample lightness and opacity significantly increased. Additions of TiO2 remarkably (p<0.05) improved the water vapor and mechanical properties of composite samples, although the loading of ZEO, regardless of TiO2 incorporation, led to a considerable decrement of these properties. Furthermore, composite films containing ZEO combined with 2% of TiO2 compared with 1% of NPs blended with ZEO had strong antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes. Generally, the findings proposed that the addition of TiO2 reinforces the properties of composite films with a synergistic effect of ZEO loading on the antibacterial ability, by which the resulting biodegradable composite samples can be used as a food active packaging material.
Collapse
|
21
|
Hanafy MS, Desoky WM, Hussein EM, El-Shaer NH, Gomaa M, Gamal AA, Esawy MA, Guirguis OW. Biological applications study of bio-nanocomposites based on chitosan/TiO 2 nanoparticles polymeric films modified by oleic acid. J Biomed Mater Res A 2020; 109:232-247. [PMID: 32496626 DOI: 10.1002/jbm.a.37019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to prepare and characterize nanocomposite films to improve the treatment of skin wounds by applying the film as a bandage. To modify chitosan (Cs) and to prepare nanocomposites, a mixture between titanium dioxide nanoparticles (TiO2 NPs) was performed at different concentrations (2, 5, 10 and 15 wt%) and oleic acid (OA). The thin nanocomposite films were prepared by using casting method. The prepared films (Cs, Cs/TiO2 NPs, Cs/OA and Cs/OA/TiO2 NPs) were described by water absorption (swelling study) and biological degradation. Physico-chemical characterizations of Cs, Cs/OA, Cs/TiO2 NPs and Cs/OA/TiO2 NPs (with only 15 wt% TiO2 NPs) films were determined by X-ray diffraction, transmission high-resolution electron microscopy, field emission scanning electron microscopy, thermal analysis and Fourier transform infrared spectroscopy as well as their mechanical properties. Antimicrobial activity against microorganisms has been studied to assess activity against bacteria. The prepared nanocomposite films showed good antimicrobial activity for both Gram-positive and Gram-negative bacteria. The therapeutic effects of Cs-TiO2 NPs-oleic acid nanocomposites on healing excision wounds were studied in rat animal model. The data obtained revealed that groups treated with nanocomposites showed enhancement wound closure and speed up wound healing time.
Collapse
Affiliation(s)
- Magda S Hanafy
- Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Waled M Desoky
- Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Elham M Hussein
- Department of Physics, Biophysics Branch, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nahla H El-Shaer
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed Gomaa
- Department of Surgery, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Gamal
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Mona A Esawy
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Osiris W Guirguis
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Hussein MA, Alamry KA, Almehmadi SJ, Elfaky M, Džudžević-Čančar H, Asiri AM, Hussien MA. Novel biologically active polyurea derivatives and its TiO 2-doped nanocomposites. Des Monomers Polym 2020; 23:59-74. [PMID: 33029075 PMCID: PMC7448906 DOI: 10.1080/15685551.2020.1767490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022] Open
Abstract
A new series of polyurea derivatives and its nanocomposites were synthesised by the solution polycondensation method through the interaction between 4(2-aminothiazol-4-ylbenzylidene)-4-(tert-butyl) cyclohexanone and diisocyanate compound in pyridine. The PU1-3 structure was confirmed using Fourier transform-infrared (FTIR) spectroscopy and characterised by solubility, viscometry, gel permeation chromatography (GPC), and X-ray diffraction (XRD) analysis. In addition, PU1-3 was evaluated by TGA. Polyurea-TiO2nanocomposites were synthesised using the same technique as that of PU1-3 by adding TiO2 as a nanofiller. The thermal properties of PU2TiO2a-d were evaluated by TGA. Moreover, the morphological properties of a selected sample were examined by SEM and TEM. In addition, PU1-3 and PU2TiO2a-d were examined for antimicrobial activity against certain bacteria and fungi. The PU1-3 showed antibacterial activity against some of the tested bacteria and fungi, as did PU2TiO2a-d, which increased with the increase in TiO2 content. Furthermore, molecular docking studies were displayed against all PU1-3 derivatives against two types of proteins. The results show that the increase in the strength of π-H interactions and H-donors contributed to improved binding of PU2 compared to PU1 andPU3. The docking of 1KZN against the tested polymers suggests an increase in the docking score of PU2, then PU1, and PU3, which is in agreement with the antibacterial study.
Collapse
Affiliation(s)
- Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar J Almehmadi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M.A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. Džudžević-Čančar
- Department of Natural Science in Pharmacy, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia-Herzegovina
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
23
|
Chitosan-TiO 2: A Versatile Hybrid Composite. MATERIALS 2020; 13:ma13040811. [PMID: 32053948 PMCID: PMC7078654 DOI: 10.3390/ma13040811] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/12/2023]
Abstract
In recent years, a strong interest has emerged in hybrid composites and their potential uses, especially in chitosan–titanium dioxide (CS–TiO2) composites, which have interesting technological properties and applications. This review describes the reported advantages and limitations of the functionalization of chitosan by adding TiO2 nanoparticles. Their effects on structural, textural, thermal, optical, mechanical, and vapor barrier properties and their biodegradability are also discussed. Evidence shows that the incorporation of TiO2 onto the CS matrix improves all the above properties in a dose-dependent manner. Nonetheless, the CS–TiO2 composite exhibits great potential applications including antimicrobial activity against bacteria and fungi; UV-barrier properties when it is used for packaging and textile purposes; environmental applications for removal of heavy metal ions and degradation of diverse water pollutants; biomedical applications as a wound-healing material, drug delivery system, or by the development of biosensors. Furthermore, no cytotoxic effects of CS–TiO2 have been reported on different cell lines, which supports their use for food and biomedical applications. Moreover, CS–TiO2 has also been used as an anti-corrosive material. However, the development of suitable protocols for CS–TiO2 composite preparation is mandatory for industrial-scale implementation.
Collapse
|
24
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|