1
|
Zhang S, Wang T, Wang X, Liao W, Wang X, Yuan Y, Chen G, Jia X. A novel aggregation-induced emission fluorescent probe with large Stokes shift for sensitive detection of pH changes in live cells. LUMINESCENCE 2022; 37:2139-2144. [PMID: 36367244 DOI: 10.1002/bio.4407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The detection of intracellular pH is crucial for elucidating the pathological process of cancers, as well as for medical diagnostic applications. Here, we developed an aggregation-induced emission active pH-responsive fluorescent probe (TPE-DCP) for sensitively detecting cell pH changes. The probe shows obvious pH-sensing properties at ~615 nm, with a pKa value of 6.82 and a good linear pH response ranging from 8.5 to 4.5. TPE-DCP holds advantages such as excellent anti-interference performance, good photostability, and low cytotoxicity, and has been successfully used to image intracellular pH changes in cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
3
|
Trushina DB, Borodina TN, Belyakov S, Antipina MN. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. MATERIALS TODAY. ADVANCES 2022; 14:100214. [PMID: 36785703 PMCID: PMC9909585 DOI: 10.1016/j.mtadv.2022.100214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The recent successful application of lipid-based nanoparticles as delivery vehicles in COVID-19 vaccines demonstrated the superior potential of nanoparticle-based technology for targeted drug delivery in biomedicine. Among novel, rapidly advancing delivery platforms, the inorganic nano/microparticles gradually reach new heights and attract well-deserved attention among scientists and clinicians. Calcium carbonate in its vaterite form is used as a biocompatible carrier for a progressively increasing number of biomedical applications. Its growing popularity is conferred by beneficial porosity of particles, high mechanical stability, biodegradability under certain physiological conditions, ability to provide a continuous steady release of bioactives, preferential safety profile, and low cost, which make calcium carbonate a suitable entity of highly efficacious formulations for controlled drug delivery and release. The focal point of the current review is the success of the recent vaterite applications in the delivery of various diagnostics and therapeutic drugs. The manuscript highlights the nuances of drug loading in vaterite particles, connecting it with particle morphology, size, and charge of the loaded molecules, payload concentration, mono- or multiple drug loading. The manuscript also depicts recent successful methods of increasing the loading capacity developed for vaterite carriers. In addition, the review describes the various administration routes for vaterite particles with bioactive payloads, which were reported in recent years. Special attention is given to the multi-drug-loaded vaterite particles ("molecular cocktails") and reports on their successful delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Daria B Trushina
- A.V. Shubnikov Institute of Crystallography of Federal Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Russian Academy of Sciences, Moscow, 119333, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Tatiana N Borodina
- A.V. Shubnikov Institute of Crystallography of Federal Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Sergei Belyakov
- Theracross Technologies Pte Ltd, 251 Pasir Panjang Rd, Singapore, 118610, Singapore
| | - Maria N Antipina
- Singapore Institute of Food and Biotechnology Innovation A∗STAR, 31 Biopolis Way, #01-02 Nanos, Singapore, 138669, Singapore
| |
Collapse
|
4
|
Sun G, Sun K, Sun J. Combination prostate cancer therapy: Prostate-specific membranes antigen targeted, pH-sensitive nanoparticles loaded with doxorubicin and tanshinone. Drug Deliv 2021; 28:1132-1140. [PMID: 34121558 PMCID: PMC8205064 DOI: 10.1080/10717544.2021.1931559] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most frequently diagnosed cancer in the men population. Combination anticancer therapy using doxorubicin (DOX) and another extract of traditional Chinese medicine is one nano-sized drug delivery system promising to generate synergistic anticancer effects, maximize the treatment effect, and overcome multi-drug resistance. The purpose of this study is to construct a drug delivery system for the co-delivery of DOX and tanshinones (TAN). Lipid nanoparticles loaded with DOX and TAN (N-DOX/TAN) were prepared by emulsification and solvent-diffusion method. PSMA targeted nanoparticles loaded with DOX and TAN (P-N-DOX/TAN) were synthesized by conjugating a PSMA targeted ligand to N-DOX/TAN. We evaluate the performance of this system in vitro and in vivo. P-N-DOX/TAN has a size of 139.7 ± 4.1 nm and a zeta potential of 11.2 ± 1.6 mV. The drug release of DOX and TAN from P-N-DOX/TAN was much faster than that of N-DOX/TAN. N-DOX/TAN presented more inhibition effect on tumor growth than N-DOX and N-TAN, which is consistent with the synergistic results and successfully highlighting the advantages of combing the DOX and TAN in one system. P-N-DOX/TAN achieved higher uptake by LNCaP cells (58.9 ± 1.9%), highest tumor tissue distribution, and the most significant tumor inhibition efficiency. The novel nanomedicine offers great promise for the dual drug delivery to prostate cancer cells, showing the potential of synergistic combination therapy for prostate cancer.
Collapse
Affiliation(s)
- Guanxing Sun
- Department of Oncology, Municipal Hospital of Zaozhuang, Zaozhuang, P. R. China
| | - Kai Sun
- Department of Pharmacy, Municipal Hospital of Zaozhuang, Zaozhuang, P. R. China
| | - Jie Sun
- Department of Pharmacy, Municipal Hospital of Zaozhuang, Zaozhuang, P. R. China
| |
Collapse
|
5
|
Huang H, Zhang W, Liu Z, Guo H, Zhang P. Smart responsive-calcium carbonate nanoparticles for dual-model cancer imaging and treatment. ULTRASONICS 2020; 108:106198. [PMID: 32590261 DOI: 10.1016/j.ultras.2020.106198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is widely applied in cancer diagnosis clinically. However, the gas-filled contrast agents are unstable in the blood and exhibit shorter imaging time, which limit their clinical use. In this study, a diagnostic nanoparticle system was developed for dual-mode imaging (ultrasound and fluorescence), which after encapsulation with doxorubicin (DOX) demonstrated simultaneous therapeutic function towards cancer treatment. Thus, calcium carbonate (CaCO3) nanoparticles were encapsulated with doxorubicin (DOX) to obtain CaCO3-DOX. Under acidic conditions, it produced carbon dioxide (CO2) to enhance ultrasound imaging and increase the release of DOX. After intravenously injecting CaCO3-DOX to tumor-bearing mice, in the presence of an ultrasound field, CO2bubbles were sufficiently generated at the tumor tissues for echogenic reflectivity. Also, the indocyanine green (ICG) was encapsulated into CaCO3 nanoparticles, to further detect the tumor with fluorescence. The resultant theranostic nanoparticle system exhibited therapeutic efficacy towards tumour-bearing mice. Overall, this investigation provides an attractive strategy for dual-mode cancer diagnostics.
Collapse
Affiliation(s)
- Haifeng Huang
- Department of Urology, Nanajing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Wenjing Zhang
- School of Pharmacy, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Zhe Liu
- School of Pharmacy, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Hongqian Guo
- Department of Urology, Nanajing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210008, PR China.
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China.
| |
Collapse
|