1
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
2
|
Hassanen EI, Morsy EA, Hussien AM, Ibrahim MA, Farroh KY. The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci Rep 2020; 40:BSR20194296. [PMID: 32124930 PMCID: PMC7103588 DOI: 10.1042/bsr20194296] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate what dosage of gold nanoparticles (GNPs) would improve growth performance, antioxidant levels and immune defense in broiler chickens. The experiment was carried out on 90 one-day-old mixbred Cobb chicks. The birds were allocated into three groups with three replicates. Group (1) kept as a negative control. Groups (2) and (3) received 5, 15 ppm GNPs via drinking water weekly for 35 days of chicks' life. Blood samples were collected at 8, 15, 22 and 36 days for oxidative stress evaluations and immunological studies. The birds were slaughtered at the ages of 36 days and thymus, spleen, busa of Fabricius and liver were collected for histopathological description, RT-PCR analysis and DNA fragmentation assay. Our results confirmed that adding of 15ppm GNPs in drinking water were induced remarkable blood oxidative stress damage, histopathological alterations, up-regulation of IL-6, Nrf2 gene expression, and DNA fragmentation in the examined immune organs of the broiler chickens as well as a significant reduction in the antibody titer against Newcastle (ND) and avian influenza (AI) viruses were noticed. On the other hand, the group received 5 ppm GNPs noticed better growth performance with the enhancement of the final food conversion ratio (FCR) without any significant difference in the previous toxicological and immunological parameters compared with the control groups. We suggest that feeding of 5ppm GNPs could improve the antioxidant capacity, immunity and performance in poultry but further food quality assurance tests are required in the future to confirm its safety for people.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department of Pathology, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman A. Morsy
- Department of Poultry Diseases, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M. Hussien
- Department of Toxicology and Forensic Medicine, Veterinary Medicine, Cairo University, Egypt
| | - Marwa A. Ibrahim
- Department of Biochemistry and Molecular Biology, Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y. Farroh
- Department of Nanotechnology, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019; 8:763-775. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the development of nanotechnology, nanomaterials are increasingly being applied in health fields, such as biomedicine, pharmaceuticals, and cosmetics. Concerns have therefore been raised over their toxicity and numerous studies have been carried out to assess their safety. Most studies on the toxicity and therapeutic mechanisms of nanomaterials have revealed the effects of nanomaterials on cells at the transcriptome and proteome levels. However, epigenetic modifications, for example DNA methylation, histone modification, and noncoding RNA expression induced by nanomaterials, which play an important role in the regulation of gene expression, have not received sufficient attention. In this review, we therefore state the importance of studying epigenetic effects induced by nanomaterials; then we review the progress of nanomaterial epigenetic research in the assessment of toxicity, therapeutic, and other mechanisms. We also clarify the possible study directions for future nanomaterial epigenetic research. Finally, we discuss the future development and challenges of nanomaterial epigenetics that must still be addressed. We hope to understand the potential toxicity of nanomaterials and clearly understand the therapeutic mechanism through a thorough investigation of nanomaterial epigenetics.
Collapse
Affiliation(s)
- Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
4
|
HelmyAbdou KA, Ahmed RR, Ibrahim MA, Abdel-Gawad DRI. The anti-inflammatory influence of Cinnamomum burmannii against multi-walled carbon nanotube-induced liver injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36063-36072. [PMID: 31745806 DOI: 10.1007/s11356-019-06707-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/03/2019] [Indexed: 05/04/2023]
Abstract
Carbon nanotubes (CNTs) are extensively used in nanotechnology due to their unique physico-chemical properties. CNTs were implicated in many disorders connected with human health. So, we aimed in this study to provide new insight into the role of aqueous C. burmannii in treating the possible hepatotoxic effects of multi-walled carbon nanotube (MWCNTs) exposure. A total of 32 male albino rats were divided into 4 groups: control group, cinnamon-treated group, MWCNT-treated, and cinnamon- and MWCNT-treated group. To achieve the aim of this study, evaluation of percentage change of body weight, oxidant, and antioxidant status including lipid peroxidation (LPO), nitrite, total thiols, glutathione contents (GSH), the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S transferase (GST) was done. Histopathological examination and the rate of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-1 (COX-1), and tumor necrotic factor-α were performed. Oral administration of aqueous C. burmannii to those MWCNT-treated rats resulted in a significant reduction in LPO and total thiol contents with a significant elevation in the activities of SOD, CAT, and GPX, while GSH content and GST activity were not significantly affected. We observed a significant downregulation in the rate of previous pro-inflammatory cytokines. All this improvement in these examined markers resulted in a significant modulation in the hepatic histopathological lesions caused by MWCNTs. Aqueous C. burmannii extract exhibited a potential defensive effect on the hepatic injury triggered by MWCNTs through upgrading the antioxidant system and downregulating the rate of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Khaled Abbas HelmyAbdou
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha Rashad Ahmed
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Doaa Ramadan I Abdel-Gawad
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|