1
|
Wang C, Zhou G, Guo X, Zhang W, Wu C. Electrical Stimulation Promotes Endocytosis of Magnetic Nanoparticles by Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403381. [PMID: 39126240 DOI: 10.1002/smll.202403381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/12/2024]
Abstract
Nanomaterials are increasingly used in biomedical imaging and cancer therapy, and how to improve the endocytosis of nanomaterials by cells is a key issue. The application of alternating current (AC) electrical stimulation to osteosarcoma cells (MG-63) here can increase the cellular endocytosis of Fe3O4 nanoparticles (diameter: 50 nm) by 52.46% via macropinocytosis. This can be ascribed to the decrease in F-actin content and the increase in intracellular Ca2+ concentration. Transmission electron microscope, immunofluorescence staining, western blot, flow cytometry, and inductively coupled plasma emission spectrometer analyses support this interpretation. The application of electrical stimulation decreases the cell viability in magnetic hyperthermia by 47.6% and increases the signal intensity of magnetic resonance imaging by 29%. Similar enhanced endocytosis is observed for breast cancer cells (MCF-7), glioblastoma cells (U-87 MG), melanoma cells (A-375), and bladder cancer cells (TCCSUP), and also for Fe3O4 nanoparticles with the diameters of 20 and 100 nm, and Zn0.54Co0.46Cr0.65Fe1.35O4 nanoparticles with the diameter of 70 nm. It seems the electrical stimulation has the potential to improve the diagnostic and therapeutic effects of magnetic nanoparticles by promoting endocytosis.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanlin Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Reviansyah FH, Putra DRD, Supriatna JA, Takarini V, Komariah M. Green Dentistry in Oral Cancer Treatment Using Biosynthesis Superparamagnetic Iron Oxide Nanoparticles: A Systematic Review. Cancer Manag Res 2024; 16:1231-1245. [PMID: 39282609 PMCID: PMC11402364 DOI: 10.2147/cmar.s477791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Oral cancer is a worldwide health issue with high incidence and mortality, demands an effective treatment to improve patient prognosis. Superparamagnetic iron oxide nanoparticles (SPIONs) emerged as a candidate for oral cancer treatment due to their unique attributes, enabling a synergistic combination with its drug-delivery capabilities and hyperthermia when exposed to magnetic fields. SPIONs can be synthesized using biopolymers from agricultural waste like lignin from paddy, which produce biogenic nano iron oxide with superparamagnetic and antioxidant effects. In addition, lignin also acts as a stabilizing agent in creating SPIONs. This study aimed to explore how agricultural waste could be used to prepare SPIONs using the green synthesis method and to evaluate its potential for oral cancer specifically focusing on its effectiveness, side effects, biocompatibility, and toxicity. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. PubMed, EBSCO, and Scopus databases were exploited in the selection of articles published within the last decade. This study quality assessment uses OHAT for critical appraisal tools. Only 10 studies met the inclusion criteria. The findings suggest that the use of agricultural waste in the preparation of SPIONs not only holds potency for oral cancer treatment through drug delivery and hyperthermia but also aligns with the concept of green dentistry. SPIONs as a treatment modality for oral cancer have demonstrated notable effectiveness and versatility. This study provides robust evidence supporting green dentistry by using agricultural waste in the preparation and formulation of SPIONs for managing oral cancer. Its multifunctional nature and ability to enhance treatment efficacy while minimizing adverse effects on healthy tissues highlights the potency of SPION-based oral cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Veni Takarini
- Department of Dental Materials and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
- Oral Biomaterials Research Centre, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
| | - Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Padjadjaran University, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Zhang YF, Lu M. Advances in magnetic induction hyperthermia. Front Bioeng Biotechnol 2024; 12:1432189. [PMID: 39161353 PMCID: PMC11331313 DOI: 10.3389/fbioe.2024.1432189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Magnetic induction hyperthermia (MIH), is a technique that has developed rapidly in recent years in the field of tumor thermotherapy. It implants a magnetic heating medium (millimeter-sized heat seeds, micron-sized magnetic particles and nanometer-sized magnetic fluids, etc.) inside the tumor. The material heats up under the induction of an external alternating magnetic field (100-500 kHz), which causes a high temperature zone to rapidly form in the local biological tissues and induces apoptosis in tumor cells. Magnetic induction hyperthermia has the advantages of high safety, strong targeting, repeatable treatment, and the size of the incision during treatment is negligible compared to surgical resection, and is currently used in clinical treatment. However, the millimeter-scale heat seed heating that is typically used in treatments can result in uneven temperatures within the tissue. Common MIH heating devices are bulky and complex in design, and are not easy for medical staff to get their hands on, which are issues that limit the diffusion of MIH. In this view, this paper will discuss the basic theoretical research on MIH and the progress of MIH-related technologies, with a focus on the latest research and development results and research hotspots of nanoscale ferromagnetic media and magnetic heat therapy devices, as well as the validation results and therapeutic efficacy of the new MIH technology on animal experiments and clinical trials. In this paper, it is found that induction heating using magnetic nanoparticles improves the uniformity of the temperature field, and the magneto-thermal properties of nanoscale ferromagnetic materials are significantly improved. The heating device was miniaturized to simplify the operation steps, while the focusing of the magnetic field was locally enhanced. However, there are fewer studies on the biotoxicity aspects of nanomedicines, and the localized alternating magnetic field uniformity used for heating and the safety of the alternating magnetic field after irradiation of the human body have not been sufficiently discussed. Ultimately, the purpose of this paper is to advance research related to magnetic induction thermotherapy that can be applied in clinical treatment.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
5
|
Caizer-Gaitan IS, Watz CG, Caizer C, Dehelean CA, Bratu T, Crainiceanu Z, Coroaba A, Pinteala M, Soica CM. In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy. Int J Mol Sci 2024; 25:8380. [PMID: 39125950 PMCID: PMC11313510 DOI: 10.3390/ijms25158380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.
Collapse
Affiliation(s)
- Isabela-Simona Caizer-Gaitan
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
- Department of Clinical Practical Skills, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Claudia-Geanina Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
| | - Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tiberiu Bratu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
| | - Zorin Crainiceanu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
| | - Adina Coroaba
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry of Iasi, Romanian Academy, 700487 Iasi, Romania; (A.C.); (M.P.)
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry of Iasi, Romanian Academy, 700487 Iasi, Romania; (A.C.); (M.P.)
| | - Codruta-Marinela Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Yang L, Li H, Luo A, Zhang Y, Chen H, Zhu L, Yang D. Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma. J Nanobiotechnology 2024; 22:168. [PMID: 38610015 PMCID: PMC11015647 DOI: 10.1186/s12951-024-02433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Hongjiao Li
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Aihua Luo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
7
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
8
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
9
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. Materials and Methods A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). Results The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. Conclusion The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
An Y, Xu D, Wen X, Chen C, Liu G, Lu Z. Internal Light Sources-Mediated Photodynamic Therapy Nanoplatforms: Hope for the Resolution of the Traditional Penetration Problem. Adv Healthc Mater 2024; 13:e2301326. [PMID: 37413664 DOI: 10.1002/adhm.202301326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Photodynamic therapy (PDT) is an alternative cancer treatment technique with a noninvasive nature, high selectivity, and minimal adverse effects. The indispensable light source used in PDT is a critical factor in determining the energy conversion of photosensitizers (PSs). Traditional light sources are primarily concentrated in the visible light region, severely limiting their penetration depth and making them prone to scattering and absorption when applied to biological tissues. For that reason, its efficacy in treating deep-seated lesions is often inadequate. Self-exciting PDT, also known as auto-PDT (APDT), is an attractive option for circumventing the limited penetration depth of traditional PDT and has acquired significant attention. APDT employs depth-independent internal light sources to excite PSs through resonance or radiative energy transfer. APDT has considerable potential for treating deep-tissue malignancies. To facilitate many researchers' comprehension of the latest research progress in this field and inspire the emergence of more novel research results. This review introduces internal light generation mechanisms and characteristics and provides an overview of current research progress based on the recently reported APDT nanoplatforms. The current challenges and possible solutions of APDT nanoplatforms are also presented and provide insights for future research in the final section of this article.
Collapse
Affiliation(s)
- Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affilited Hospital of Xiamen University, Xiamen, 361000, China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
12
|
Srivastava N, Chudasama B, Baranwal M. Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases 2023; 18:060801. [PMID: 38078795 DOI: 10.1116/6.0003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Magnetic hyperthermia utilizing magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF) represents a promising approach in the field of cancer treatment. Active targeting has emerged as a valuable strategy to enhance the effectiveness and specificity of drug delivery. Active targeting utilizes specific biomarkers that are predominantly found in abundance on cancer cells while being minimally expressed on healthy cells. Current comprehensive review provides an overview of several cancer-specific biomarkers, including human epidermal growth factor, transferrin, folate, luteinizing hormone-releasing hormone, integrin, cluster of differentiation (CD) receptors such as CD90, CD95, CD133, CD20, and CD44 also CXCR4 and vascular endothelial growth factor, these biomarkers bind to ligands present on the surface of MNPs, enabling precise targeting. Additionally, this review touches various combination therapies employed to combat cancer. Magnetic hyperthermia synergistically enhances the efficacy of conventional cancer treatments such as targeted chemotherapy, radiation therapy, gene therapy, and immunotherapy.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
13
|
Li H, Shi W, Shen T, Hui S, Hou M, Wei Z, Qin S, Bai Z, Cao J. Network pharmacology-based strategy for predicting therapy targets of Ecliptae Herba on breast cancer. Medicine (Baltimore) 2023; 102:e35384. [PMID: 37832105 PMCID: PMC10578738 DOI: 10.1097/md.0000000000035384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer is a prevalent malignancy affecting women globally, characterized by significant morbidity and mortality rates. Ecliptae Herba is a traditional herbal medicine commonly used in clinical practice, has recently been found to possess antitumor properties. In order to explore the underlying material basis and molecular mechanisms responsible for the anti-breast cancer effects of Ecliptae Herba, we used network pharmacology and experimental verification. UPLC-MS/MS was utilized to identify compounds present in Ecliptae Herba. The active components of Ecliptae Herba and its breast cancer targets were screened using public databases. Hub genes were identified using the STRING and Metascape database. The R software was utilized for visual analysis of GO and KEGG pathways. The affinity of the hub targets for the active ingredients was assessed by molecular docking analysis, which was verified by experimental assessment. A total of 178 targets were obtained from the 10 active components of Ecliptae Herba, while 3431 targets associated with breast cancer were screened. There were 144 intersecting targets between the components and the disease. Targets with a higher degree, namely EGFR and TGFB1, were identified through the hub subnetwork of PPI. GO and KEGG analyses revealed that Ecliptae Herba plays an important role in multiple cancer therapeutic mechanisms. Moreover, molecular docking results showed that the core components had good binding affinity with key targets. Finally, it was confirmed that TGF-β1 might be a potential crucial target of Ecliptae Herba in the treatment of breast cancer by cytological experiments, and the TGF-β1/Smad signaling pathway might be an important pathway for Ecliptae Herba to exert its therapeutic effects. This study elucidated the active ingredients, key targets, and molecular mechanisms of Ecliptae Herba in the treatment of breast cancer, providing a scientific foundation and therapeutic mechanism for the prevention and treatment of breast cancer with Traditional Chinese medicine.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingming Shen
- Ningde Hospital of Traditional Chinese Medicine, Ningde, China
| | - Siwen Hui
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Luoyang Branch of Dongzhimen Hospital Afiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
15
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
16
|
Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep RGGR, Damayanthi HDWT, Hettiarachchi K, Dorji T, Lucero‐Prisno DE, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep 2023; 6:e1471. [PMID: 37547360 PMCID: PMC10397482 DOI: 10.1002/hsr2.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology-based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer-reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non-specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long-term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform-based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Shalindu M. Jayawickrama
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Yovanthi A. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Karunakalage I. P. Prabani
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Kushani Akshala
- Department of Agricultural Biology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | | | - Kalani Hettiarachchi
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Thinley Dorji
- Department of Internal MedicineCentral Regional Referral HospitalGelegphuBhutan
| | - Don E. Lucero‐Prisno
- Department of Global Health and DevelopmentLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Kehinde K. Kanmodi
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of DentistryUniversity of RwandaKigaliRwanda
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Cephas Health Research Initiative IncIbadanNigeria
| | - Ruwan D. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
17
|
Hariharan A, Tran SD. Localized Drug Delivery Systems: An Update on Treatment Options for Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:1844. [PMID: 37514031 PMCID: PMC10385385 DOI: 10.3390/pharmaceutics15071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, with surgery, radiotherapy, chemotherapy, and immunotherapy being the primary treatment modalities. The treatment for HNSCC has evolved over time, due to which the prognosis has improved drastically. Despite the varied treatment options, major challenges persist. HNSCC chemotherapeutic and immunotherapeutic drugs are usually administered systemically, which could affect the patient's quality of life due to the associated side effects. Moreover, the systemic administration of salivary stimulating agents for the treatment of radiation-induced xerostomia is associated with toxicities. Localized drug delivery systems (LDDS) are gaining importance, as they have the potential to provide non-invasive, patient-friendly alternatives to cancer therapy with reduced dose-limiting toxicities. LDDSs involve directly delivering a drug to the tissue or organ affected by the disease. Some of the common localized routes of administration include the transdermal and transmucosal drug delivery system (DDSs). This review will attempt to explore the different treatment options using LDDSs for the treatment of HNSCC and radiotherapy-induced damage and their potential to provide a better experience for patients, as well as the obstacles that need to be addressed to render them successful.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
18
|
Yue M, Guo T, Nie DY, Zhu YX, Lin M. Advances of nanotechnology applied to cancer stem cells. World J Stem Cells 2023; 15:514-529. [PMID: 37424953 PMCID: PMC10324502 DOI: 10.4252/wjsc.v15.i6.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 04/18/2023] [Indexed: 06/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a small proportion of the cells that exist in cancer tissues. They are considered to be the culprit of tumor genesis, development, drug resistance, metastasis and recurrence because of their self-renewal, proliferation, and differentiation potential. The elimination of CSCs is thus the key to cure cancer, and targeting CSCs provides a new method for tumor treatment. Due to the advantages of controlled sustained release, targeting and high biocompatibility, a variety of nanomaterials are used in the diagnosis and treatments targeting CSCs and promote the recognition and removal of tumor cells and CSCs. This article mainly reviews the research progress of nanotechnology in sorting CSCs and nanodrug delivery systems targeting CSCs. Furthermore, we identify the problems and future research directions of nanotechnology in CSC therapy. We hope that this review will provide guidance for the design of nanotechnology as a drug carrier so that it can be used in clinic for cancer therapy as soon as possible.
Collapse
Affiliation(s)
- Miao Yue
- Clinical Laboratory, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Ting Guo
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China
| | - Deng-Yun Nie
- Clinical Laboratory, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China
| | - Yin-Xing Zhu
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China
| | - Mei Lin
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu Province, China
| |
Collapse
|
19
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|
20
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
21
|
Montazersaheb P, Pishgahzadeh E, Jahani VB, Farahzadi R, Montazersaheb S. Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy. Life Sci 2023; 323:121714. [PMID: 37088411 DOI: 10.1016/j.lfs.2023.121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tumor heterogeneity is a major problem in cancer treatment. Cancer stem cells (CSCs) are a subpopulation of tumor masses that produce proliferating and quiescent cells. Under stress-related conditions, quiescent cells are capable of repopulating tumor masses. Consequently, many attempts have been made to identify, isolate, and eradicate CSCs from various tumors. Research has found that quiescent CSCs are less susceptible to conventional therapy than bulk cancer cells. This could be due to reduced cell cycling and increased DNA repair capacity of these cells. Indeed, disease progression is temporarily suppressed by eliminating fast-proliferating tumor cells and sparing quiescent CSCs lead to cancer relapse. Among all the available therapeutic modalities for cancer treatment, hyperthermia uses moderate heat to kill tumor cells. Nanoparticle-based platforms have the potential to deposit heat locally and selectively with the simultaneous activation of nanoparticles as heat transducers. Over the past few decades, magnetic nanoparticles (MNPs) have been widely investigated in the biomedical field. Magnetic hyperthermia therapy (MHT) is a promising therapeutic approach in which MNPs are delivered directly through targeting (systemic) or by direct injection into a tumor under exposure to an alternating magnetic field (AMF). Heat is generated by the MNPs subjected to AMF at a frequency of 100 kHz. Despite the widespread use of MHT alone or in combination therapies, its effectiveness in targeting CSCs remains unclear. This review discusses various types of MHT and their related mechanisms in cancer therapy, particularly concerning the eradication of CSCs.
Collapse
Affiliation(s)
- Parsa Montazersaheb
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Bayrami Jahani
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Recent Clinical and Preclinical Advances in External Stimuli-Responsive Therapies for Head and Neck Squamous Cell Carcinoma. J Clin Med 2022; 12:jcm12010173. [PMID: 36614974 PMCID: PMC9821160 DOI: 10.3390/jcm12010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and immunotherapy have been proven to benefit the patients and prolong their survival time, the overall five-year survival rate is still below 50%. Hence, the development of new therapies for better patient management is an urgent need. External stimuli-responsive therapies are emerging therapies with promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT) have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes, while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT) still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be referenced in designing other stimuli-responsive therapies in order to achieve better antitumor effects as well as less toxicity. In this review, we consolidate the advancements and limitations of various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of therapies in HNSCC treatments.
Collapse
|
23
|
Burruss CP, Kacker A. The current status of nanotechnological approaches to therapy and drug delivery in otolaryngology: A contemporary review. Laryngoscope Investig Otolaryngol 2022; 7:1762-1772. [PMID: 36544970 PMCID: PMC9764775 DOI: 10.1002/lio2.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives/Hypothesis To summarize the current standing of nanomedicine-based technology, particularly nanoparticles (NPs), for drug delivery and diagnostic mechanisms in otolaryngology and the otolaryngology subspecialties. Methods Literature searches were performed using PubMed and Ovid MEDLINE from 2010 to 2022. The search focused on original articles describing developments and applications of nanotechnology and drug delivery in otology, neurotology, cranial base surgery, head and neck oncology, laryngology, bronchoesophagology, and rhinology. Keyword searches and cross-referencing were also performed. No statistical analysis was performed. Results The PubMed search yielded 29 articles, and two Ovid MEDLINE searches both yielded 7 and 26 articles, respectively. Cross-referencing and keyword searches in PubMed and Google Scholar yielded numerous articles. The results indicate that currently, NPs are the most thoroughly studied nanotechnology for drug delivery and therapy in otolaryngology. Organic NPs have been utilized for drug delivery in otology and head and neck oncology due to their high biocompatibility. Inorganic NPs have similarly been utilized for drug delivery. However, inorganic NPs seem to be studied less extensively in these fields, likely due to an increased risk for heavy metal toxicity. Due to their magnetic properties, inorganic NPs have been utilized for magnetic-guided delivery in otology and thermoradiation and magnetic resonance imaging in head and neck oncology. Applications of nanotechnology to the fields of laryngology, bronchoesophagology, and rhinology have been studied less compared with otology and head and neck oncology. However, researchers have primarily employed NPs and other nanotechnologies such as nanofibers and nanoclusters for drug elution at mucosal surfaces to reduce airway and nasal inflammation. Conclusions Nanomedicine offers potential benefits in the treatment of patients in the field of otolaryngology due to enhanced control over drug release, cell-specific targeting, and the potential to reduce drug toxicity. Future work is needed to ensure the safety of these therapies to integrate this field of research into human therapies.
Collapse
Affiliation(s)
| | - Ashutosh Kacker
- Department of Otolaryngology–Head and Neck SurgeryWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
24
|
Su Z, Zhang J, Tan P, Zhu S, Jiang N. Selective Polyetheretherketone Implants Combined with Graphene Cause Definitive Cell Adhesion and Osteogenic Differentiation. Int J Nanomedicine 2022; 17:5327-5338. [PMID: 36411765 PMCID: PMC9675333 DOI: 10.2147/ijn.s380345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/30/2022] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Polyetheretherketone (PEEK) has good biosafety and chemical stability for bone repair. However, PEEK is biologically inert and cannot promote bone apposition. This study investigated whether graphene-modified PEEK (G-PEEK) could improve cell adhesion and osteogenic differentiation. METHODS G-PEEK was prepared by melted blending and was characterized. In vitro, the biocompatibility of G-PPEK and the ability to promote cell adhesion and osteogenic differentiation in rabbit bone marrow mesenchymal stem cells (rBMSCs) were examined using live and dead cell double staining, the cell counting kit-8 (CCK-8) assay, immunofluorescence and quantitative real-time PCR (qRT‒PCR). An in vivo rabbit extra-articular graft-to-bone healing model was established. At 4 and 12 weeks after surgery, CT analysis and histological evaluation were performed. RESULTS In vitro, G-PEEK significantly improved the adhesion and proliferation of rBMSCs, with good biocompatibility. In vivo, G-PEEK promoted new bone formation at the site of the bone defect. CONCLUSION G-PEEK showed excellent osteogenesis performance, which promises new applications in implant materials.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
25
|
Cao M, Shi E, Wang H, Mao L, Wu Q, Li X, Liang Y, Yang X, Wang Y, Li C. Personalized Targeted Therapeutic Strategies against Oral Squamous Cell Carcinoma. An Evidence-Based Review of Literature. Int J Nanomedicine 2022; 17:4293-4306. [PMID: 36134201 PMCID: PMC9484769 DOI: 10.2147/ijn.s377816] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumor in the head and neck, with a poor prognosis mainly due to recurrence and metastasis. Classical treatment modalities for OSCC like surgery and radiotherapy have difficulties in dealing with metastatic tumors, and together with chemotherapy, they have major problems related to non-specific cell death. Molecular targeted therapies offer solutions to these problems through not only potentially maximizing the anticancer efficacy but also minimizing the treatment-related toxicity. Among them, the receptor-mediated targeted delivery of anticancer therapeutics remains the most promising one. As OSCC exhibits a heterogeneous nature, selecting the appropriate receptors for targeting is the prerequisite. Hence, we reviewed the OSCC-associated receptors previously used in targeted therapy, focused on their biochemical characteristics and expression patterns, and discussed the application potential in personalized targeted therapy of OSCC. We hope that a better comprehension of this subject will help to provide the fundamental information for OSCC personalized therapeutic planning.
Collapse
Affiliation(s)
- Mingxin Cao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Enyu Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hanping Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Lujia Mao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Qiqi Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xinming Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People's Republic of China
| | - Yanjie Liang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaoying Yang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yinsong Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Changyi Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| |
Collapse
|
26
|
Zhang GM, Nie SC, Xu ZY, Fan YR, Jiao MN, Miao HJ, Liang SX, Yan YB. Advanced Polymeric Nanoagents for Oral Cancer Theranostics: A Mini Review. Front Chem 2022; 10:927595. [PMID: 35774863 PMCID: PMC9237336 DOI: 10.3389/fchem.2022.927595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common tumours in the world threatening human life and health. The 5-years survival rate of patients with oral cancer has not been improved significantly for many years. The existing clinical diagnostic methods rarely achieve early diagnosis due to deficiencies such as lack of sensitivity. Most of the patients have progressed to the advanced stages when oral cancer is detected. Unfortunately, the traditional treatment methods are usually ineffective at this stage. Therefore, there is an urgent need for more effective and precise techniques for early diagnosis and effective treatment of oral cancer. In recent decades, nanomedicine has been a novel diagnostic and therapeutic platform for various diseases, especially cancer. The synthesis and application of various nanoagents have emerged at the right moment. Among them, polymer nanoagents have unique advantages, such as good stability, high biosafety and high drug loading, showing great potential in the early accurate diagnosis and treatment of tumours. In this review, we focus on the application of advanced polymeric nanoagents in both the diagnosis and treatment of oral cancer. Then, the future therapy strategies and trends for polymeric nanoagents applied to oral cancer are discussed, with the hope that more advanced nanomedical technology will be applied to oral cancer research and promote the development of stomatology.
Collapse
Affiliation(s)
- Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
| | | | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Ya-Ru Fan
- Tianjin Medical University, Tianjin, China
| | | | | | - Su-Xia Liang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:2169-2186. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.
Collapse
Affiliation(s)
- Hongjiao Li
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Yao Zhang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mengmeng Xu
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Deqin Yang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
28
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
29
|
Rodríguez-Vargas MP, Alvarado-Garnica H, Gutiérrez-Verdín LD, Villanueva-Sánchez FG, García-Contreras R. [Cancer stem cells in oral squamous cell carcinoma. Literature review]. REVISTA CIENTÍFICA ODONTOLÓGICA 2022; 10:e106. [PMID: 38389655 PMCID: PMC10880721 DOI: 10.21142/2523-2754-1002-2022-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 02/24/2024] Open
Abstract
Objective To perform a literature review on oral squamous cell carcinoma, the presence of cancer stem cells; their association with the course of the disease and therapeutic applications. Methods : A search was performed in the PubMed database by entering the following algorithm: ((((neoplastic stem cells [MeSH Terms ]) OR (Cancer stem cells [Text Word ])) AND (Squamous Cell Carcinoma of Head and Neck [MeSH Terms])) AND (Oral squamous cell carcinoma [Text Word ]), to find articles in english published between 2012 and 2022. The PRISMA diagram was used to identify and select the articles. Results A result of 49 articles was obtained; of which 27 were chosen according to the title and abstract in their association with the topic. In addition, 8 additional articles suggested by their relationship with the information previously searched were included. In total, 35 articles were evaluated. There has been found that tumoral cells in squamous oral carcinoma are heterogeneous since they include cancer stem cells wich possess characteristics of stem and neoplasic cells; which possess characteristics of stem cells as well as neoplastic cells; they have been associated with disease progression, recurrence, and metastasis and have been considered to be a key mechanism of therapy failure. Conclusions The expression of stem cell markers in oral squamous cell carcinomas has been demonstrated and has contributed to their identification in oral squamous cell carcinomas and has been implicated in the behavior of cancer cells. New therapeutic measures aimed at eliminating cancer stem cells have been proposed and developed.
Collapse
Affiliation(s)
- Mariana Paulina Rodríguez-Vargas
- Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - Hugo Alvarado-Garnica
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - Luis David Gutiérrez-Verdín
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato. León, Guanajuato, México. Universidad de Guanajuato División de Ciencias e Ingenierías Campus León Universidad de Guanajuato LeónGuanajuato Mexico
| | - Francisco Germán Villanueva-Sánchez
- Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| |
Collapse
|
30
|
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. MATERIALS 2022; 15:ma15062086. [PMID: 35329542 PMCID: PMC8951645 DOI: 10.3390/ma15062086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Collapse
|
31
|
Zou W, Zhang Y, Bai G, Zhuang J, Wei L, Wang Z, Sun M, Wang J. siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J Cell Mol Med 2022; 26:1969-1978. [PMID: 35229451 PMCID: PMC8980945 DOI: 10.1111/jcmm.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
CD44 has shown prognostic values and promising therapeutic potential in multiple human cancers; however, the effects of CD44 silencing on biological behaviors of cancer stem cells (CSCs) have not been fully understood in colorectal cancer. To examine the contribution of siRNA‐induced knockdown of CD44 to the biological features of colorectal CSCs, colorectal CSCs HCT116‐CSCs were generated, and CD44 was knocked down in HCT116‐CSCs using siRNA. The proliferation, migration and invasion of HCT116‐CSCs were measured, and apoptosis and cell‐cycle analyses were performed. The sensitivity of HCT116‐CSCs to oxaliplatin was tested, and xenograft tumor growth assay was performed to examine the role of CD44 in HCT116‐CSCs tumorigenesis in vivo. In addition, the expression of epithelial–mesenchymal transition (EMT) markers E‐cadherin, N‐cadherin and vimentin was quantified. siRNA‐induced knockdown of CD44 was found to inhibit the proliferation, migration and invasion, induce apoptosis, promote cell‐cycle arrest at the G1/G0 phase and increase the sensitivity of HCT116‐CSCs to oxaliplatin in HCT116‐CSCs, and knockdown of CD44 suppressed in vivo tumorigenesis and intrapulmonary metastasis of HCT116‐CSCs. Moreover, silencing CD44 resulted in EMT inhibition. Our findings demonstrate that siRNA‐induced CD44 knockdown suppresses the proliferation, invasion and in vivo tumorigenesis and metastasis of colorectal CSCs by inhibiting EMT.
Collapse
Affiliation(s)
- Weiyan Zou
- Department of Histology and Embryology, Bengbu Medical College, Bengbu City, China
| | - Yi Zhang
- The Second Department of Surgery, Xiamen Hospital Affiliated to Beijing University of Chinese Medicine, Xiamen City, China
| | - Guangfu Bai
- Department of Emergency, Wuxi Huishan District People's Hospital, Wuxi City, China
| | - Jialu Zhuang
- The Second School of Clinical Medicine, Bengbu Medical College, Bengbu City, China
| | - Lin Wei
- The Second School of Clinical Medicine, Bengbu Medical College, Bengbu City, China
| | - Zishu Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Meiqun Sun
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| | - Junbin Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, China
| |
Collapse
|
32
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
33
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
34
|
Van Zundert I, Bravo M, Deschaume O, Cybulski P, Bartic C, Hofkens J, Uji-i H, Fortuni B, Rocha S. Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics 2021; 13:2153. [PMID: 34959436 PMCID: PMC8703776 DOI: 10.3390/pharmaceutics13122153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
The application of antibodies in nanomedicine is now standard practice in research since it represents an innovative approach to deliver chemotherapy agents selectively to tumors. The variety of targets or markers that are overexpressed in different types of cancers results in a high demand for antibody conjugated-nanoparticles, which are versatile and easily customizable. Considering up-scaling, the synthesis of antibody-conjugated nanoparticles should be simple and highly reproducible. Here, we developed a facile coating strategy to produce antibody-conjugated nanoparticles using 'click chemistry' and further evaluated their selectivity towards cancer cells expressing different markers. Our approach was consistently repeated for the conjugation of antibodies against CD44 and EGFR, which are prominent cancer cell markers. The functionalized particles presented excellent cell specificity towards CD44 and EGFR overexpressing cells, respectively. Our results indicated that the developed coating method is reproducible, versatile, and non-toxic, and can be used for particle functionalization with different antibodies. This grafting strategy can be applied to a wide range of nanoparticles and will contribute to the development of future targeted drug delivery systems.
Collapse
Affiliation(s)
- Indra Van Zundert
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Maria Bravo
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Olivier Deschaume
- Soft-Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium; (O.D.); (C.B.)
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Carmen Bartic
- Soft-Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium; (O.D.); (C.B.)
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Hiroshi Uji-i
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita Ward, Sapporo 001-0020, Japan
| | - Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| |
Collapse
|
35
|
Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021; 28:272-284. [PMID: 33501883 PMCID: PMC7850355 DOI: 10.1080/10717544.2021.1876182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) is among the most common malignancy that has a profound impact on human health and life quality. The treatment for HNC, especially for the advanced cancer is stage-dependent and in need of combined therapies. Various forms of adjuvant treatments such as chemotherapy, phototherapy, hyperthermia, gene therapy have been included in the HNC therapy. However, there are still restrictions with traditional administration such as limited in situ therapeutic effect, systemic toxicity, drug resistance, etc. In recent years, stimuli-responsive drug delivery systems (DDSs) have attracted the great attention in HNC therapy. These intelligent DDSs could respond to unique tumor microenvironment, external triggers or dual/multi stimulus with more specific drug delivery and release, leading to enhanced treatment efficiency and less reduced side effects. In this article, recent studies on stimuli-responsive DDSs for HNC therapy were summarized, which could respond to endogenous and exogenous triggers including pH, matrix metalloproteinases (MMPs), reactive oxygen species (ROS), redox condition, light, magnetic field and multi stimuli. Their therapeutic remarks, current limits and future prospect for these intelligent DDSs were discussed. Furthermore, multifunctional stimuli-responsive DDSs have also been reviewed. With the modification of drug carriers or co-loading with therapeutic agents. Those intelligent DDSs showed more biofunctions such as combined therapeutic effects or integration of diagnosis and treatment for HNC. It is believed that stimuli-responsive drug delivery systems showed great potential for future clinic translation and application for the treatment of HNC.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Libring S, Enríquez Á, Lee H, Solorio L. In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers (Basel) 2021; 13:4440. [PMID: 34503250 PMCID: PMC8430481 DOI: 10.3390/cancers13174440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.
Collapse
Affiliation(s)
- Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
37
|
de Oliveira Machado V, Leão Andrade Â, Fabris JD, Freitas ETF, Maria da Fonte Ferreira J, Simon A, Domingues RZ, Fernandez-Outon LE, do Carmo FA, Carlos dos Santos Souza A, Saba H. Preparation of hybrid nanocomposite particles for medical practices. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Oliveira BSAD, de Assis ACC, Souza NM, Ferreira LFR, Soriano RN, Bilal M, Iqbal HMN. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci 2021; 279:119667. [PMID: 34087280 DOI: 10.1016/j.lfs.2021.119667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.
Collapse
Affiliation(s)
- Bruna Stefane Alves de Oliveira
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Ana Carolina Correa de Assis
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Natália Melo Souza
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35010-177, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
39
|
Kiamohammadi L, Asadi L, Shirvalilou S, Khoei S, Khoee S, Soleymani M, Minaei SE. Physical and Biological Properties of 5-Fluorouracil Polymer-Coated Magnetite Nanographene Oxide as a New Thermosensitizer for Alternative Magnetic Hyperthermia and a Magnetic Resonance Imaging Contrast Agent: In Vitro and In Vivo Study. ACS OMEGA 2021; 6:20192-20204. [PMID: 34395970 PMCID: PMC8358959 DOI: 10.1021/acsomega.1c01763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
This study reports a new procedure for utilizing 5-fluorouracil (5-Fu)-loaded polycaprolactone (PCL)/chitosan-covered magnetite nanographene oxide (5-Fu/SPION/NGO@PCL-LMWC) as a platform for synergistic thermo-chemotherapy. In fact, superparamagnetic iron oxide nanoparticles/nanographene oxide (SPION/NGO) nanoparticles can be coated with copolymers PCL/chitosan to attain better colloidal stability in the biological environment. Nanoparticles were synthesized and characterized for their size, surface charge, X-ray patterns, polymer content, and in vitro heat-triggered release. In vitro cytotoxic effects of nanoparticles on CT-26 cells were assessed with an MTT assay and real-time polymerase chain reaction. In vivo tumor growth inhibition was evaluated on an allograft mouse model of CT-26 cells. Tumor-bearing mice were injected with 5-Fu-loaded nanoparticles intravenously, and then, the targeted delivery was amplified using a magnetic field and finally exposed to an alternating magnetic field (AMF) (40 A/m, 13.56 MHz), during which the tumor site temperature increased to 43 °C. By using an infrared camera, we managed to heat the nanoparticles up to a constant temperature between 42.5 and 43.5 °C, with a tolerance ±0.03 °C. Finally, in vitro results showed that 5-Fu-loaded nanoparticles combined with AMF hyperthermia significantly reduced the plating efficiency of the cells (P < 0.01) and increased the Bax/Bcl-2 ratio (1.42 times, P < 0.01) compared with those achieved with each one alone. Furthermore, in vivo results demonstrated that the treatment of 5-Fu-loaded nanoparticles combined with the AMF diminished the growth of CT-26 tumor cells and increased the life span of the tumor-bearing mice (P < 0.001) by thermal energy deposition compared to that of the free 5-Fu drug. Also, the high level of accumulation of the nanoparticles within the tumor site was easily monitored with magnetic resonance imaging. It was concluded that the multifunctional magnetic nanoparticles could be used as a promising nanocarrier platform for achieving concurrent goals, drug delivery, magnetic targeting, thermal-sensitizing, cell death induction, and real-time monitoring of response to treatment.
Collapse
Affiliation(s)
- Leila Kiamohammadi
- Department
of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Leili Asadi
- Department
of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sakine Shirvalilou
- Finetech
in Medicine Research Centre, Iran University
of Medical Sciences, Tehran 1449614535, Iran
| | - Samideh Khoei
- Finetech
in Medicine Research Centre, Iran University
of Medical Sciences, Tehran 1449614535, Iran
- Department
of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- , . Phone: (0098) 21 88622647. Fax: (0098) 21 88622647
| | - Sepideh Khoee
- Department
of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14155 6455, Iran
| | - Maryam Soleymani
- Department
of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14155 6455, Iran
| | | |
Collapse
|
40
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
41
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
42
|
Ertas YN, Abedi Dorcheh K, Akbari A, Jabbari E. Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. NANOMATERIALS 2021; 11:nano11071755. [PMID: 34361141 PMCID: PMC8308126 DOI: 10.3390/nano11071755] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells that can initiate, self-renew, and sustain tumor growth. CSCs are responsible for tumor metastasis, recurrence, and drug resistance in cancer therapy. CSCs reside within a niche maintained by multiple unique factors in the microenvironment. These factors include hypoxia, excessive levels of angiogenesis, a change of mitochondrial activity from aerobic aspiration to aerobic glycolysis, an upregulated expression of CSC biomarkers and stem cell signaling, and an elevated synthesis of the cytochromes P450 family of enzymes responsible for drug clearance. Antibodies and ligands targeting the unique factors that maintain the niche are utilized for the delivery of anticancer therapeutics to CSCs. In this regard, nanomaterials, specifically nanoparticles (NPs), are extremely useful as carriers for the delivery of anticancer agents to CSCs. This review covers the biology of CSCs and advances in the design and synthesis of NPs as a carrier in targeting cancer drugs to the CSC subpopulation of cancer cells. This review includes the development of synthetic and natural polymeric NPs, lipid NPs, inorganic NPs, self-assembling protein NPs, antibody-drug conjugates, and extracellular nanovesicles for CSC targeting.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey;
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Keyvan Abedi Dorcheh
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran;
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Correspondence:
| |
Collapse
|
43
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
44
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
45
|
Li C, Wang J, Lu X, Ge H, Jin X, Guan Q, su Y, Pan R, Li P, Cai W, Zhu X. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials 2020; 255:120071. [DOI: 10.1016/j.biomaterials.2020.120071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
|
46
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
47
|
Huang C, Chen F, Zhang L, Yang Y, Yang X, Pan W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in vitro and in vivo Evaluation. Int J Nanomedicine 2020; 15:2987-2998. [PMID: 32431497 PMCID: PMC7200226 DOI: 10.2147/ijn.s242490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging cancer therapy requires highly sensitive diagnosis in combination with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates (HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for breast cancer synergistic theranostics. Materials and Methods The synthesized amphiphilic HA-CHEMS conjugates and TPGS self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were characterized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS). The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodistribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice; furthermore, pharmacokinetics were investigated in healthy mice. Results HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that 99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without resulting in obvious toxicities to major organs. Conclusion The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic theranostics.
Collapse
Affiliation(s)
- Chong Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Xinchang 312500, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
48
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
49
|
Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ. An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics 2020; 10:3083-3098. [PMID: 32194856 PMCID: PMC7053211 DOI: 10.7150/thno.41647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over a decade of research has confirmed the critical role of cancer stem-like cells (CSCs) in tumor initiation, chemoresistance, and metastasis. Increasingly, CSC hierarchies have begun to be defined with some recurring themes. This includes evidence that these hierarchies are 'flexible,' with both cell state transitions and dedifferentiation events possible. These findings pose therapeutic hurdles and opportunities. Here, we review cancer stem cell hierarchies and their interactions with the tumor microenvironment. We also discuss the current therapeutic approaches designed to target CSC hierarchies and initial clinical trial results for CSC targeting agents. While cancer stem cell targeted therapies are still in their infancy, we are beginning to see encouraging results that suggest a positive outlook for CSC-targeting approaches.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Suo X, Zhang J, Zhang Y, Liang XJ, Zhang J, Liu D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J Mater Chem B 2020; 8:3985-4001. [DOI: 10.1039/d0tb00311e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) exhibit high resistance to conventional therapy and are responsible for cancer metastasis and tumor relapse.
Collapse
Affiliation(s)
- Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Juncai Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Yue Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology
- Beijing 100190
- People's Republic of China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| |
Collapse
|