1
|
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024; 32:916-940. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Monika Prakash
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
2
|
Deng J, Li J, Yan L, Guo W, Ding X, Ding P, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Xie Z, Fan L, Nie L. Accelerated, injectable, self-healing, scarless wound dressings using rGO reinforced dextran/chitosan hydrogels incorporated with PDA-loaded asiaticoside. Int J Biol Macromol 2024; 278:134424. [PMID: 39111509 DOI: 10.1016/j.ijbiomac.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.
Collapse
Affiliation(s)
- Jun Deng
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Zhizhong Xie
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
3
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
4
|
Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing. Int J Nanomedicine 2024; 19:4495-4513. [PMID: 38799696 PMCID: PMC11123069 DOI: 10.2147/ijn.s460700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Electrical stimulation (ES) can effectively promote skin wound healing; however, single-electrode-based ES strategies are difficult to cover the entire wound area, and the effectiveness of ES is often limited by the inconsistent mechanical properties of the electrode and wound tissue. The above factors may lead to ES treatment is not ideal. Methods A multifunctional conductive hydrogel dressing containing methacrylated gelatin (GelMA), Ti3C2 and collagen binding antimicrobial peptides (V-Os) was developed to improve wound management. Ti3C2 was selected as the electrode component due to its excellent electrical conductivity, the modified antimicrobial peptide V-Os could replace traditional antibiotics to suppress bacterial infections, and GelMA hydrogel was used due to its clinical applicability in wound healing. Results The results showed that this new hydrogel dressing (GelMA@Ti3C2/V-Os) not only has excellent electrical conductivity and biocompatibility but also has a durable and efficient bactericidal effect. The modified antimicrobial peptides V-Os used were able to bind more closely to GelMA hydrogel to exert long-lasting antibacterial effects. The results of cell experiment showed that the GelMA@Ti3C2/V-Os hydrogel dressing could enhance the effect of current stimulation and significantly improve the migration, proliferation and tissue repair related genes expression of fibroblasts. In vitro experiments results showed that under ES, GelMA@Ti3C2/V-Os hydrogel dressing could promote re-epithelialization, enhance angiogenesis, mediate immune response and prevent wound infection. Conclusion This multifunctional nanocomposite hydrogel could provide new strategies for promoting infectious wound healing.
Collapse
Affiliation(s)
- Dawei Ren
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yan Zhang
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Du
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lina Wang
- Department of Pediatric Respiration, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Meiheng Gong
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Zhu
- Department of Otorhinolaryngology, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
6
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
7
|
Dong Y, Wang Z, Wang J, Sun X, Yang X, Liu G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J Biol Eng 2024; 18:3. [PMID: 38212854 PMCID: PMC10785445 DOI: 10.1186/s13036-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Large skin wounds are one of the most important health problems in the world. Skin wound repair and tissue regeneration are complex processes involving many physiological signals, and effective wound healing remains an enormous clinical challenge. Therefore, there is an urgent need for a strategy to rapidly kill bacteria, promote cell proliferation and accelerate wound healing. At present, electrical stimulation (ES) is often used in the clinical treatment of skin wounds and can simulate the endogenous biological current of the body and accelerate the repair process of skin wounds. However, a single ES strategy has difficulty covering the entire wound area, which may lead to unsatisfactory therapeutic effects. To overcome this deficiency, it is essential to develop a collaborative treatment strategy that combines ES with other treatments. In this study, gold nanoparticles and antibacterial peptides (Os) were loaded on the surface of poly(lactic-co-glycolic acid) (PLGA) material through the reducibility and adhesion of polydopamine (PDA) and improved the electrical activity, anti-inflammatory, antibacterial and biocompatibility properties of the polymer material. At the same time, this composite membrane material (Os/Au-PDA@PLGA) combined with ES was used in wound therapy to improve the wound healing rate. The results show that the new wound repair material has good biocompatibility and can effectively promote cell proliferation and migration. Through the combined application of gold nanoparticles and antibacterial peptides Os, the polymer materials have more efficient bactericidal and antioxidant effects. The antibacterial experiment results showed that gold nanoparticles could further enhance the antibacterial activity of antibacterial peptides. Furthermore, the Os/Au-PDA@PLGA composite membrane has good hydrophilicity and electrical activity, which can provide a more favorable cell microenvironment for wound healing. In vivo studies using a full-thickness skin defect model in rats showed that the Os/Au-PDA@PLGA composite membrane had a better therapeutic effect than the pure PLGA material. More importantly, the combination of the Os/Au-PDA@PLGA composite with ES significantly accelerated the rate of vascularization and collagen deposition and promoted wound healing compared with non-ES controls. Therefore, the combination of the Au/Os-PDA@PLGA composite membrane with ES may provide a new strategy for the effective treatment of skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiapeng Wang
- Department of Orthopaedic Surgery, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xuedi Sun
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guomin Liu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
8
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023; 196:114778. [PMID: 36931347 DOI: 10.1016/j.addr.2023.114778] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Wound healing is characterized by complex, orchestrated, spatiotemporal dynamic processes. Recent findings demonstrated suitable local microenvironments were necessities for wound healing. Wound microenvironments include various biological, biochemical and physical factors, which are produced and regulated by endogenous biomediators, exogenous drugs, and external environment. Successful drug delivery to wound is complicated, and need to overcome the destroyed blood supply, persistent inflammation and enzymes, spatiotemporal requirements of special supplements, and easy deactivation of drugs. Triggered by various factors from wound microenvironment itself or external elements, stimuli-responsive biomaterials have tremendous advantages of precise drug delivery and release. Here, we discuss recent advances of stimuli-responsive biomaterials to regulate local microenvironments during wound healing, emphasizing on the design and application of different biomaterials which respond to wound biological/biochemical microenvironments (ROS, pH, enzymes, glucose and glutathione), physical microenvironments (mechanical force, temperature, light, ultrasound, magnetic and electric field), and the combination modes. Moreover, several novel promising drug carriers (microbiota, metal-organic frameworks and microneedles) are also discussed.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Buying Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu City, China; Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Wenhong Li
- Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
10
|
Non-contact electrical stimulation as an effective means to promote wound healing. Bioelectrochemistry 2022; 146:108108. [DOI: 10.1016/j.bioelechem.2022.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
|
11
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
12
|
Cheah YJ, Buyong MR, Mohd Yunus MH. Wound Healing with Electrical Stimulation Technologies: A Review. Polymers (Basel) 2021; 13:3790. [PMID: 34771347 PMCID: PMC8588136 DOI: 10.3390/polym13213790] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials.
Collapse
Affiliation(s)
- Yt Jun Cheah
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56600, Malaysia;
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56600, Malaysia;
| |
Collapse
|
13
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
14
|
Fu C, Jiang Y, Yang X, Wang Y, Ji W, Jia G. Mussel-Inspired Gold Nanoparticle and PLGA/L-Lysine-g-Graphene Oxide Composite Scaffolds for Bone Defect Repair. Int J Nanomedicine 2021; 16:6693-6718. [PMID: 34621123 PMCID: PMC8491140 DOI: 10.2147/ijn.s328390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Insufficient biological activity heavily restricts the application and development of biodegradable bone implants. Functional modification of bone implants is critical to improve osseointegration and bone regeneration. METHODS In this study, L-lysine functionalized graphene oxide (Lys-g-GO) nanoparticles and polydopamine-assisted gold nanoparticle (AuNPs-PDA) coatings were applied to improve the biological function of PLGA scaffold materials. The effects of Lys-g-GO nanoparticles and AuNPs-PDA functionalized coatings on the physicochemical properties of PLGA scaffolds were detected with scanning electron microscopy (SEM), contact angle measurement, and mechanical testing instruments. In vitro, the effects of composite scaffolds on MC3T3-E1 cell proliferation, adhesion, and osteogenic differentiation were studied. Finally, a radial defect model was used to assess the effect of composite scaffolds on bone defect healing. RESULTS The prepared AuNPs-PDA@PLGA/Lys-g-GO composite scaffolds exhibited excellent mechanical strength, hydrophilicity and antibacterial properties. In vitro, this composite scaffold can significantly improve osteoblast adhesion, proliferation, osteogenic differentiation, calcium deposition, and other cell behaviour. In vivo, this composite scaffold can significantly promote the new bone formation and collagen deposition in the radial defect site and presented good biocompatibility. CONCLUSION The combination of bioactive nanoparticles and surface coatings shows considerable potential to enhance the osseointegration of bone implants.
Collapse
Affiliation(s)
- Chuan Fu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Yikun Jiang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Wei Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Guoliang Jia
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
15
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
16
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
17
|
Wang K, Qi Z, Pan S, Zheng S, Wang H, Chang Y, Li H, Xue P, Yang X, Fu C. Preparation, characterization and evaluation of a new film based on chitosan, arginine and gold nanoparticle derivatives for wound-healing efficacy. RSC Adv 2020; 10:20886-20899. [PMID: 35517756 PMCID: PMC9054353 DOI: 10.1039/d0ra03704d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
It is well-known that the combination of polymers and nanoparticles (NPs) provides optimised wound dressing and accelerates wound healing. The knowledge about the structure and properties of these materials is of critical importance in biological processes related to wound healing. In this study, we prepared a chitosan (CS) film modified with arginine (Arg) and gold NPs (AuNPs) and investigated its effectiveness as a dressing material for wound healing. Fourier-transform infrared spectroscopy (FTIR) confirmed that Arg was successfully grafted on CS. The resultant CS-Arg/AuNP film was then characterised by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The modification of Arg and AuNPs improved the hydrophilicity, mechanical strength and antibacterial properties of the film, which in turn provided an enhanced ideal environment for cell adhesion and proliferation. Cell Counting Kit-8 (CCK-8) was used to demonstrate the survival rate. Furthermore, the proteins involved in wound healing were evaluated qualitatively and quantitatively by immunofluorescence and western blotting, respectively. The skin defect models used for the in vivo studies revealed that the CS-Arg/AuNP dressing accelerated wound closure, re-epithelialization and collagen deposition. Our cumulative findings support the feasibility of using the proposed film as a promising candidate for tissue engineering of the skin in the near future. It is well-known that the combination of polymers and nanoparticles (NPs) provides optimised wound dressing and accelerates wound healing.![]()
Collapse
Affiliation(s)
- Kai Wang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Zhiping Qi
- The Second Hospital of Jilin University
- Changchun
- China
| | - Su Pan
- The Second Hospital of Jilin University
- Changchun
- China
| | - Shuang Zheng
- The Second Hospital of Jilin University
- Changchun
- China
| | - Haosheng Wang
- The Second Hospital of Jilin University
- Changchun
- China
| | - YuXin Chang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Hongru Li
- The Second Hospital of Jilin University
- Changchun
- China
| | - Pan Xue
- The Second Hospital of Jilin University
- Changchun
- China
| | - Xiaoyu Yang
- The Second Hospital of Jilin University
- Changchun
- China
| | - Chuan Fu
- The Second Hospital of Jilin University
- Changchun
- China
| |
Collapse
|