1
|
Xia Y, Li X, Liu F. Targeted redox-responsive peptide for arterial chemoembolization therapy of orthotropic hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3925-3934. [PMID: 38990300 PMCID: PMC11519146 DOI: 10.1007/s00261-024-04481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Transcatheter Arterial Chemoembolization (TACE) is the first choice for the treatment of advanced-stage hepatocellular carcinoma (HCC). However, TACE suffers from a lack of specificity and rapid drug release. Herein, a targeted redox-responsive peptide (TRRP) was synthesized and used as a carrier of doxorubicin (DOX) to enhance the efficacy of TACE through tumor cells targeting and controlled drug release. METHODS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at high glutathione (GSH) concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. RESULTS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at GSH concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. CONCLUSIONS This study demonstrated that TRRP was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Yimao Xia
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fengyong Liu
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
2
|
Li Y, Chen J, Xia Q, Shang J, He Y, Li Z, Chen Y, Gao F, Yu X, Yuan Z, Yin P. Photothermal Fe 3O 4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy. J Nanobiotechnology 2024; 22:630. [PMID: 39415226 PMCID: PMC11484360 DOI: 10.1186/s12951-024-02909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
Photothermal therapy (PTT) is a promising non-invasive treatment that has shown great potential in eliminating tumors. It not only induces apoptosis of cancer cells but also triggers immunogenic cell death (ICD) which could activate the immune system against cancer. However, the immunosuppressive tumor microenvironment (TIME) poses a challenge to triggering strong immune responses with a single treatment, thus limiting the therapeutic effect of cancer immunotherapy. In this study, dual-targeted nano delivery system (GOx@FeNPs) combined with αPD-L1 immune checkpoint blocker could inhibit colorectal cancer (CRC) progression by mediating PTT, ferroptosis and anti-tumor immune response. Briefly, specific tumor delivery was achieved by the cyclic arginine glycyl aspartate (cRGD) peptide and anisamide (AA) in GOx@FeNPs which not only had a good photothermal effect to realize PTT and induce ICD, but also could deplete glutathione (GSH) and catalyze the production of reactive oxygen species (ROS) from endogenous H2O2. All these accelerated the Fenton reaction and augmented the process of PTT-induced ICD. Thus, a large amount of tumor specific antigen was released to stimulate the maturation of dendritic cells (DCs) in lymph nodes and enhance the infiltration of CD8+ T cells in tumor. At the same time, the combination with αPD-L1 has favorable synergistic effectiveness against CRC with tumor inhibition rate over 90%. Furthermore, GOx@FeNPs had good magnetic resonance imaging (MRI) capability under T2-weighting owing to the presence of Fe3+, which is favorable for integrated diagnosis and treatment systems of CRC. By constructing a dual-targeted GOx@FeNPs nanoplatform, PTT synergistically combined with ferroptosis was realized to improve the immunotherapeutic effect, providing a new approach for CRC immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yingying Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Shang J, Xia Q, Sun Y, Wang H, Chen J, Li Y, Gao F, Yin P, Yuan Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int J Nanomedicine 2024; 19:7831-7850. [PMID: 39105099 PMCID: PMC11299722 DOI: 10.2147/ijn.s470005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Collapse
Affiliation(s)
- Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yuji Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Hongtao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
5
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Wu Y, Cao H, Yang S, Liu C, Han Z. Progress of near-infrared-II fluorescence in precision diagnosis and treatment of colorectal cancer. Heliyon 2023; 9:e23209. [PMID: 38149207 PMCID: PMC10750080 DOI: 10.1016/j.heliyon.2023.e23209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Colorectal cancer is a malignant tumour with high incidence and mortality worldwide; therefore, improving the early diagnosis of colorectal cancer and implementing a targeted "individualized treatment" strategy is of great concern. NIR-II fluorescence imaging is a large-depth, high-resolution optical bioimaging tool. Around the NIR-II window, researchers have developed a variety of luminescent probes, imaging systems, and treatment methods with colorectal cancer targeting capabilities, which can be visualized and image-guided in clinical surgery. This article aims to overcome the difficulties in diagnosing and treating colorectal cancer. The present review summarizes the latest results on using NIR-II fluorescence for targeted colorectal cancer imaging, expounds on the application prospects of NIR-II optical imaging for colorectal cancer, and discusses the imaging-guided multifunctional diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Yong Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hongtao Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoqing Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chaohui Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhenguo Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
7
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zeting Y, Shuli M, Yue L, Haowei F, Jing S, Yueping Z, Jie W, Teng C, Wanli D, Zhang K, Peihao Y. Tissue adhesive indocyanine green-locking granular gel-mediated photothermal therapy combined with checkpoint inhibitor for preventing postsurgical recurrence and metastasis of colorectal cancer. Bioeng Transl Med 2023; 8:e10576. [PMID: 38023716 PMCID: PMC10658503 DOI: 10.1002/btm2.10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Developing effective therapy to inhibit postoperative recurrence and metastasis of colorectal cancer (CRC) is challenging and significant to reduce mortality and morbidity. Here, a granular hydrogel, assembled from gelatin microgels by dialdehyde starch and interpenetrated with in situ polymerized poly(sulfobetaine methacrylate-co-N-isopropylacrylamide) (P(SBMA-co-NIPAM)), is prepared to load and lock Food and Drug Administration (FDA)-approved indocyanine green (ICG) with definite photothermal function and biosafety for photothermal therapy (PTT) combining with checkpoint inhibitor. The presence of P(SBMA-co-NIPAM) endows granular hydrogel with high retention to water-soluble ICG, preventing easy diffusion and rapid scavenging of ICG. The ICG-locking granular hydrogel can be spread and adhered onto the surgery site at wet state in vivo, exerting a persistent and stable PTT effect. Combined with αPD-L1 treatment, ICG-locking granular hydrogel-mediated PTT can eradicate postsurgery residual and metastatic tumors, and prevent long-term tumor recurrence. Further mechanistic studies indicate that combination treatment effectively promotes dendritic cells maturation in lymph nodes, enhances the number and infiltration of CD8+ T and CD4+ T cells in tumor tissue, and improves memory T cell number in spleen, thus activating the antitumor immune response. Overall, ICG-locking gel-mediated PTT is expected to exhibit broad clinical applications in postoperative treatment of cancers, like CRC.
Collapse
Affiliation(s)
- Yuan Zeting
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Ma Shuli
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Li Yue
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Fang Haowei
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Shang Jing
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Shanghai Putuo Central School of Clinical MedicineAnhui Medical UniversityHefeiP. R. China
| | - Zhan Yueping
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wang Jie
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Chen Teng
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Deng Wanli
- Department of Oncology, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Kunxi Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiP. R. China
| | - Yin Peihao
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of Pharmaceutics, School of PharmacyEast China University of Science and TechnologyShanghaiChina
- Department of General Surgery, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| |
Collapse
|
9
|
Farzam OR, Mehran N, Bilan F, Aghajani E, Dabbaghipour R, Shahgoli GA, Baradaran B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023; 9:e21334. [PMID: 37920521 PMCID: PMC10618772 DOI: 10.1016/j.heliyon.2023.e21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with a high mortality rate worldwide. While surgery, chemotherapy, and radiotherapy have shown some effectiveness in improving survival rates, they come with drawbacks such as side effects and harm to healthy tissues. The theranostic approach, which integrates the processes of cancer diagnosis and treatment, can minimize biological side effects. Photothermal therapy (PTT) is an emerging treatment method that usages light-sensitive agents to generate heat at the tumor site and induce thermal erosion. The development of nanotechnology for CRC treatment using imaging-guided PTT has garnered significant. Nanoparticles with suitable physical and chemical properties can enhance the efficiency of cancer diagnosis and PTT. This approach enables the monitoring of cancer treatment progress and safeguards healthy tissues. In this article, we concisely introduce the application of metal nanoparticles, polymeric nanoparticles, and carbon nanoparticles in imaging-guided PTT of colorectal cancer.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Mehran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghajani
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Yuan Z, He H, Zou J, Wang H, Chen Y, Chen Y, Lan M, Zhao Y, Gao F. Polydopamine-coated ferric oxide nanoparticles for R848 delivery for photothermal immunotherapy in breast cancer. Int J Pharm 2023; 644:123249. [PMID: 37467816 DOI: 10.1016/j.ijpharm.2023.123249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Breast cancer, which requires comprehensive multifunctional treatment strategies, is a major threat to the health of women. To develop multifunctional treatment strategies, we combined photothermal therapy (PTT) with immunotherapy in multifunctional nanoparticles for enhancing the anti-tumor efficacy. Fe3O4 nanoparticles coated with the polydopamine shell modified with polyethylene glycol and cyclic arginine-glycyl-aspartic peptide/anisamide (tNP) for loading the immune adjuvant resiquimod (R848) (R848@tNP) were developed in this research. R848@tNP had a round-like morphology with a mean diameter of 174.7 ± 3.8 nm, the zeta potential of -20.9 ± 0.9 mV, the drug loading rate of 9.2 ± 1.1 %, the encapsulation efficiency of 81.7 ± 3.2 %, high photothermal conversion efficiency and excellent magnetic properties in vitro. Furthermore, this research also explored the anticancer efficacy of nanoparticles against the breast cancer under the near-infrared (NIR) light (808 nm) in vitro and in vivo. R848@tNP-based NIR therapy effectively inhibited the proliferation of breast cancer cells. Moreover, R848@tNP mediated PTT significantly enhanced the maturation of dendritic cells in vitro. Additionally, R848@tNP enhances the anti-tumor effect and evoked an immune response under NIR in vivo. Furthermore, the biosafety of R848@tNP was fully investigated in this study. Collectively, these results clearly demonstrate that R848@tNP, with magnetic resonance imaging characteristics, is a potential therapeutic for breast cancer that combines PTT with the immunotherapy.
Collapse
Affiliation(s)
- Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hai He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, 100000 Beijing, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Yang H, Ding Y, Ding Y, Liu J. In-vial solid-phase extraction of polycyclic aromatic hydrocarbons in drug formulations stored in packaging containing rubber. RSC Adv 2023; 13:7848-7856. [PMID: 36909765 PMCID: PMC9996413 DOI: 10.1039/d2ra07582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous and persistent organic compounds that are significantly teratogenic, carcinogenic and mutagenic. Rubber stoppers commonly used in sterile formulation packaging materials often contain carbon black as the additive to enhance mechanical strength. However, PAHs may be formed during the production of carbon black, which could cause the drug formulations to be contaminated when contacting with the rubber stopper, and then enter the patient's body. The determination of PAHs in drug formulations is challenging, due to their trace amounts and matrix interference. Therefore, sample pretreatment is necessary and important. In this work, a novel technique, named in-vial solid-phase extraction (IVSPE), was developed for the selective extraction and enrichment of 16 PAHs in pharmaceuticals. The coated sample vial was directly used as the container for the whole process of sample pretreatment. As the solid-phase adsorbent, the coating was prepared by successively modifying the inner surface of a sample vial with polydopamine film and octadecylamine. PAHs could be selectively extracted through π-π stacking interaction and hydrophobic interaction, and then desorbed and enriched by a small amount of organic solvent. After systematic optimization of the coating preparation and the extraction process, the limits of detection and quantification of 16 PAHs were in the range of 0.002-0.60 ng mL-1 and 0.007-2.00 ng mL-1, respectively. Good linearities and precision of six repeated injections were obtained. The recoveries at three spiked concentration levels in normal saline were in the range of 62.72-106.90% with the relative standard deviation between 0.83% and 6.78%. Finally, PAHs in normal saline and powders for injection were extracted by established IVSPE, followed by separation and detection with high-performance liquid chromatography with a fluorescence detector and diode array detector (HPLC-FLD/DAD). It is worth noting that the preparation conditions of the adsorbent in the IVSPE method are mild, simple and green. Moreover, IVSPE has the advantages of having few work steps and avoiding the risk of contamination, because no special instrumentation or sample transfer is required. IVSPE could also be used for the pretreatment of multiple samples at the same time, which is beneficial to practical applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Yinmeng Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Ya Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Jing Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
12
|
Wang F, Li N, Wang W, Ma L, Sun Y, Wang H, Zhan J, Yu D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe 3O 4 and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int J Nanomedicine 2023; 18:881-897. [PMID: 36844435 PMCID: PMC9948638 DOI: 10.2147/ijn.s393507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Purpose Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2β, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Fangqing Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250002, People’s Republic of China
| | - Wenbo Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Long Ma
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Shandong Normal University, Jinan, 250014, People’s Republic of China
| | - Yaru Sun
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Affiliated Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Hong Wang
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China,Correspondence: Jinhua Zhan, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China, Email
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China,Dexin Yu, Department of Radiology, Qilu Hospital, Shandong University, Affiliated Hospital of Shandong University, Jinan, 250012, People’s Republic of China, Tel +86-18560081629, Fax +86-531-86927544, Email
| |
Collapse
|
13
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
14
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
15
|
Chinchulkar SA, Patra P, Dehariya D, Yu A, Rengan AK. Polydopamine nanocomposites and their biomedical applications: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paloma Patra
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Dheeraj Dehariya
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Aimin Yu
- Faculty of Science Engineering and Technology Department of Chemistry, Biotechnology Swinburne University of Technology Hawthorn Victoria Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| |
Collapse
|
16
|
Zhang T, Wang L, He X, Lu H, Gao L. Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells. Front Med (Lausanne) 2022; 9:799145. [PMID: 35935778 PMCID: PMC9355084 DOI: 10.3389/fmed.2022.799145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Nanoparticles that contact human cells without damaging basic human tissues are becoming more widely used in medicine. Efficient delivery to the intracellular target cell or compartment through the cell membrane must be achieved with minimal cytotoxicity to healthy cells. Fe3O4 nanoparticles have been widely used in biomedical research for their magnetic, non-toxic, and biocompatible properties. However, the effects of Fe3O4 nanoparticles coated with chitosan (CS) on gynecological cells are unclear. In this study, the Fe3O4 nanoparticles were coated with CS to enhance their cytocompatibility and dispersion in water. These CS-Fe3O4 nanoparticles were taken up by gynecological cells and did not affect cell viability in vitro. They have greater cytocompatibility in acidic environments than normal Fe3O4 nanoparticles and have the potential for drug delivery into gynecological cells.
Collapse
Affiliation(s)
- Taohong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Lisha Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Hailin Lu
- College of Mechanical and Electronic Engineering, Xi’an Polytechnic University, Xi’an, China
- *Correspondence: Hailin Lu,
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
- Li Gao,
| |
Collapse
|
17
|
Engineering Bio-MOF/polydopamine as a biocompatible targeted theranostic system for synergistic multi-drug chemo-photothermal therapy. Int J Pharm 2022; 623:121912. [PMID: 35710074 DOI: 10.1016/j.ijpharm.2022.121912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
In this study, a biodegradable multifunctional photothermal drug delivery nanoparticles (MPH NPs) using curcumin (Cur) as the ligand coated with hyaluronic acid (HA) was successfully prepared, which could simultaneously deliver Cur and doxorubicin hydrochloride (DOX·HCl) to overcome the common drug resistance in cancer cells. Polydopamine (PDA) as a protective shell prevents premature degradation of Cur in physiological environment and enables it to play effective medicinal value. MPH NPs can specifically recognize CD44 receptors on the surface of cancer cells for tumor targeting, with the damage of the partially released DOX to the superficial tumor cells, and then the positively charged Cur released may gradually penetrate into the cells through electron interaction to improve the problem of low permeability. In vitro cell experiments showed that hydrophobic/hydrophilic drugs co-loaded MPDH (MPH loaded with DOX·HCl) could enter the cancer cells through the endocytosis mediated by clathrin / caveolin, and the inhibition rate of MPDH on HeLa cells reached 79.28 % irradiation under 808 nm laser. MPH were composed of safe materials that have been proven to be biodegradable in human body, which avoided the disadvantages that NPs were difficult to discharge and caused damage to normal organs during long-term use.
Collapse
|
18
|
Fan S, Lin W, Huang Y, Xia J, Xu JF, Zhang J, Pi J. Advances and Potentials of Polydopamine Nanosystem in Photothermal-Based Antibacterial Infection Therapies. Front Pharmacol 2022; 13:829712. [PMID: 35321326 PMCID: PMC8937035 DOI: 10.3389/fphar.2022.829712] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Bacterial infection remains one of the most dangerous threats to human health due to the increasing cases of bacterial resistance, which is caused by the extensive use of current antibiotics. Photothermal therapy (PTT) is similar to photodynamic therapy (PDT), but PTT can generate heat energy under the excitation of light of specific wavelength, resulting in overheating and damage to target cells or sites. Polydopamine (PDA) has been proved to show plenty of advantages, such as simple preparation, good photothermal conversion effects, high biocompatibility, and easy functionalization and adhesion. Taking these advantages, dopamine is widely used to synthesize the PDA nanosystem with excellent photothermal effects, good biocompatibility, and high drug loading ability, which therefore play more and more important roles for anticancer and antibacterial treatment. PDA nanosystem-mediated PTT has been reported to induce significant tumor inhibition, as well as bacterial killings due to PTT-induced hyperthermia. Moreover, combined with other cancer or bacterial inhibition strategies, PDA nanosystem-mediated PTT can achieve more effective tumor and bacterial inhibitions. In this review, we summarized the progress of preparation methods for the PDA nanosystem, followed by advances of their biological functions and mechanisms for PTT uses, especially in the field of antibacterial treatments. We also provided advances on how to combine PDA nanosystem-mediated PTT with other antibacterial methods for synergistic bacterial killings. Moreover, we further provide some prospects of PDA nanosystem-mediated PTT against intracellular bacteria, which might be helpful to facilitate their future research progress for antibacterial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jun-Fa Xu
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Junai Zhang
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Jiang Pi
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| |
Collapse
|
19
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
20
|
He X, Chen S, Mao X. Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv 2022; 12:6540-6551. [PMID: 35424648 PMCID: PMC8982229 DOI: 10.1039/d1ra08335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
There has been great progress in cancer treatment through traditional approaches, even though some of them are still trapped in relative complications such as certain side effects and prospective chances of full recovery. As a conventional method, the immunotherapy approach is regarded as an effective approach to cure cancer. It is mainly promoted by immune checkpoint blocking and adoptive cell therapy, which can utilize the human immune system to attack tumor cells and make them necrose completely or stop proliferating cancer cells. Currently however, immunotherapy shows limited success due to the limitation of real applicable cases of targeted tumor environments and immune systems. Considering the urgent need to construct suitable strategies towards cancer therapy, metallic materials can be used as delivery systems for immunotherapeutic agents in the human body. Metallic materials exhibit a high degree of specificity, effectiveness, diagnostic ability, imaging ability and therapeutic effects with different biomolecules or polymers, which is an effective option for cancer treatment. In addition, these modified metallic materials contain immune-modulators, which can activate immune cells to regulate tumor microenvironments and enhance anti-cancer immunity. Additionally, they can be used as adjuvants with immunomodulatory activities, or as carriers for molecular transport to specific targets, which results in the loading of specific ligands to facilitate specific uptake. Here, we provide an overview of the different types of metallic materials used as efficient composites in cancer immunotherapy. We elaborate on the advancements using metallic materials with functional agents as effective composites in synergistic cancer treatment. Some nonmetallic functional composites also appear as a common phenomenon. Ascribed to the design of the composites themselves, the materials' surface structural characteristics are introduced as the drug-loading substrate. The physical and chemical properties of the functional materials emphasize that further research is required to fully characterize their mechanism, showing appropriate relevance for material toxicology and biomedical applications.
Collapse
Affiliation(s)
- Xiaoxiao He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Shiyue Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
21
|
Liu H, Zhang R, Zhang D, Zhang C, Zhang Z, Fu X, Luo Y, Chen S, Wu A, Zeng W, Qu K, Zhang H, Wang S, Shi H. Cyclic RGD-Decorated Liposomal Gossypol AT-101 Targeting for Enhanced Antitumor Effect. Int J Nanomedicine 2022; 17:227-244. [PMID: 35068931 PMCID: PMC8766252 DOI: 10.2147/ijn.s341824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction (-)-Gossypol (AT-101), the (-)-enantiomer of the natural compound gossypol, has shown significant inhibitory effects on various types of cancers such as osteosarcoma, myeloma, glioma, lung cancer, and prostate cancer. However, the clinical application of (-)-gossypol was often hindered by its evident side effects and the low bioavailability via oral administration, which necessitated the development of suitable (-)-gossypol preparations to settle the problems. In this study, injectable cyclic RGD (cRGD)-decorated liposome (cRGD-LP) was prepared for tumor-targeted delivery of (-)-gossypol. Methods The cRGD-LP was prepared based on cRGD-modified lipids. For comparison, a non-cRGD-containing liposome (LP) with a similar chemical composition to cRGD-LP was specially designed. The physicochemical properties of (-)-gossypol-loaded cRGD-LP (Gos/cRGD-LP) were investigated in terms of the drug loading efficiency, particle size, morphology, drug release, and so on. The inhibitory effect of Gos/cRGD-LP on the proliferation of tumor cells in vitro was evaluated using different cell lines. The biodistribution of cRGD-LP in vivo was investigated via the near-infrared (NIR) fluorescence imaging technique. The antitumor effect of Gos/cRGD-LP in vivo was evaluated in PC-3 tumor-bearing nude mice. Results Gos/cRGD-LP had an average particle size of about 62 nm with a narrow size distribution, drug loading efficiency of over 90%, and sustained drug release for over 96 h. The results of NIR fluorescence imaging demonstrated the enhanced tumor targeting of cRGD-LP in vivo. Moreover, Gos/cRGD-LP showed a significantly enhanced inhibitory effect on PC-3 tumors in mice, with a tumor inhibition rate of over 74% and good biocompatibility. Conclusion The incorporation of cRGD could significantly enhance the tumor-targeting effect of the liposomes and improve the antitumor effect of the liposomal (-)-gossypol in vivo, which indicated the potential of Gos/cRGD-LP that warrants further investigation for clinical applications of this single-isomer drug.
Collapse
Affiliation(s)
- Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Correspondence: Hao Liu School of Pharmacy, Southwest Medical University, No. 1 Section 1, Xiang Lin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162291 Email
| | - Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Ailing Wu
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, People’s Republic of China
| | - Weiling Zeng
- Department of Scientific Research, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Kunyan Qu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Sijiao Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Houyin Shi Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162209 Email
| |
Collapse
|
22
|
Liu J, Guo L, Rao Y, Zheng W, Gao D, Zhang J, Luo L, Kuang X, Sukumar S, Tu Y, Chen C, Sun S. In situ Injection of pH- and Temperature-Sensitive Nanomaterials Increases Chemo-Photothermal Efficacy by Alleviating the Tumor Immunosuppressive Microenvironment. Int J Nanomedicine 2022; 17:2661-2678. [PMID: 35733417 PMCID: PMC9208637 DOI: 10.2147/ijn.s367121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is challenging to treat with traditional "standard of care" therapy due to the lack of targetable biomarkers and rapid progression to distant metastasis. Methods We synthesized a novel combination regimen that included chemotherapy and photothermal therapy (PTT) to address this problem. Here, we tested a magnetic nanosystem (MNs-PEG/IR780-DOX micelles) loaded with the near-infrared (NIR) photothermal agent IR780 and doxorubicin (DOX) to achieve chemo-photothermal and boost antitumor immunity. Intraductal (i.duc) administration of MNs-PEG/IR780-DOX could increase the concentration of the drug in the tumor while reducing systemic side effects. Results We showed more uptake of MNs-PEG/IR780-DOX by 4T1-luc cells and higher penetration in the tumor. MNs-PEG/IR780-DOX exhibited excellent photothermal conversion in vivo and in vitro. The release of DOX from MNs-PEG/IR780-DOX is pH- and temperature-sensitive. Facilitated by i.duc administration, MNs-PEG/IR780-DOX displayed antitumor effects and prevented distant organs metastasis under NIR laser (L) irradiation and magnetic field (MF)while avoiding DOX-induced toxicity. More importantly, MNs-PEG/IR780-DOX alleviated tumor immunosuppressive microenvironment by increasing tumor CD8+ T cells infiltration and reducing the proportion of myeloid-derived suppressor cells (MDSCs) and Tregs. Conclusion Intraductal administration of pH- and temperature-sensitive MNs-PEG/IR780-DOX with L and MF had the potential for achieving minimally invasive, targeted, and accurate treatment of TNBC.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Dongcheng Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jing Zhang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Lan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xinwen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
23
|
Yao H, Yan J, Shao P, Wang Y, Liu T, Jiang J, Liu T. Co-modification with MSC membrane and PDA prevents Fe 3O 4-induced pulmonary toxicity in mice via AMPK-ULK1 axis. Toxicol Lett 2021; 351:145-154. [PMID: 34509610 DOI: 10.1016/j.toxlet.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Fe3O4 nanoparticles are widely used in the diagnosis and treatment of diseases due to their superparamagnetism, but their toxicity in vivo, which can result in apoptosis or autophagy, cannot be ignored. It has been reported that polydopamine (PDA) modification can reduce the toxicity of Fe3O4 and increase its biocompatibility. However, more research is warranted to further improve the modification method. We therefore developed a new method to coat Fe3O4@PDA nanoparticles with the mesenchymal stem cell membrane (MSCM) and evaluated the toxicity of the modified particles in the lungs of mice. We found that the MSCM modification significantly reduced lung injury induced by Fe3O4 particles in mice. Compared with Fe3O4@PDA nanoparticles, co-modification with MSCM and PDA significantly reduced autophagy and apoptosis in mouse lung tissue, and reduced activation of autophagy mediated by the AMPK-ULK1 pathway axis. Thus, co-modification with MSCM and PDA prevents Fe3O4-induced pulmonary toxicity in mice by inhibiting autophagy, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Yan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China; Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tianxin Liu
- School of Public Health, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Jin Z, Dun Y, Xie L, Jiang W, Sun X, Hu P, Zheng S, Yu Y. Preparation of doxorubicin-loaded porous iron Oxide@ polydopamine nanocomposites for MR imaging and synergistic photothermal-chemotherapy of cancer. Colloids Surf B Biointerfaces 2021; 208:112107. [PMID: 34517220 DOI: 10.1016/j.colsurfb.2021.112107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/24/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Recently, the development of biosafe nanocomposites with integrated diagnosis and therapeutic modality is received great attention in anti-cancer drug delivery. In this sturdy, we developed a multifunctional PION@PDA-PEG nanocomposite that combines the functions of magnetic resonance (MR) imaging, photothermal therapy (PTT) and chemotherapy into one single nanoprobe. The spherical and uniform-sized porous iron oxide nanoparticles (PION) were synthesized via a simple solvothermal method. Subsequently, a near-infrared light (NIR) sensitive polydopamine (PDA) shell was directly coated on the surface of PIONs to form monodisperse and biosafe core-shell nanocomposites, Thereafter, the surface of nanocomposites was further modified with polyethylene glycol (PEG) to prolong their blood circulation lifetime. The prepared PION@PDA-PEG showed excellent biocompatibility and promising MR imaging contrast agent capability. Furthermore, the porous structure of PION and the abundant functional groups of PDA shell permitted the remarkable drug loading capacity of more than 24.1 wt%. In addition, the synergistic photothermal- chemotherapy exhibited obvious enhanced anti-tumor effect in in-vitro cell experiment. These results suggest that the developed PION@PDA-PEG nanocomposite can be utilized as an efficient drug nanocarrier for biomedical applications including MR imaging and photothermal-chemotherapy.
Collapse
Affiliation(s)
- Zhen Jin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Yanbing Dun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Linyan Xie
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Wenshuai Jiang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xuming Sun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yi Yu
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
25
|
Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021; 9:6751-6769. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Perumal K, Ahmad S, Mohd-Zahid MH, Wan Hanaffi WN, Z.A. I, Six JL, Ferji K, Jaafar J, Boer JC, Plebanski M, Uskoković V, Mohamud R. Nanoparticles and Gut Microbiota in Colorectal Cancer. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent years have witnessed an unprecedented growth in the research area of nanomedicine. There is an increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis and treatment of various diseases, including colorectal cancer (CRC), a type of neoplasm affecting cells in the colon or the rectum. Recent findings suggest that the role of microbiota is crucial in the development of CRC and its progression. Dysbiosis is a condition that disturbs the normal microbial environment in the gut and is often observed in CRC patients. In order to detect and treat precancerous lesions, new tools such as nanotechnology-based theranostics, provide a promising option for targeted marker detection or therapy for CRC. Because the presence of gut microbiota influences the route of biomarker detection and the route of the interaction of nanoparticle/drug complexes with target cells, the development of nanoparticles with appropriate sizes, morphologies, chemical compositions and concentrations might overcome this fundamental barrier. Metallic particles are good candidates for nanoparticle-induced intestinal dysbiosis, but this aspect has been poorly explored to date. Herein, we focus on reviewing and discussing nanotechnologies with potential applications in CRC through the involvement of gut microbiota and highlight the clinical areas that would benefit from these new medical technologies.
Collapse
|
27
|
Qiu P, Xu Y. The construction of multifunctional nanoparticles system for dual-modal imaging and arteriosclerosis targeted therapy. Am J Transl Res 2021; 13:4026-4039. [PMID: 34149996 PMCID: PMC8205662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Atherosclerosis is a major risk factor for the development of cardiovascular disease. Unfortunately, due to relatively low sensitivities and poor resolution, the results of surgical resection are often largely unsatisfactory. Moreover, many chemotherapeutic agents, such as curcumin (Cur), are restricted by the low blood-brain barrier (BBB) permeability. Recently, nanotechnology proposes new opportunities to overcome these treatment barriers. In this study, superparamagnetic iron oxide nanoparticles (SPIO) was prepared by the high-temperature solid-state method, and then loaded into amphiphilic polymer DSPE-PEG to form SDP nanoparticles by hydrogen bonding in oil phase. The curcumin was encapsulated in SDP nanoparticles by self-assembly. Finally, vascular cell adhesion molecule-1 (VCAM-1) and Cy5.5 were conjugated on into SDP/Cur nanoparticles by amidation reaction. The average particle size of the prepared multifunctional SDP-VCAM-1/Cur/Cy5.5 nanoparticles is 124.4 nm, which can provide the sustained release of Cur. Moreover, the nanoparticles are proved to have superparamagnetic properties and fluorescence properties. In vitro cell experiments show that nanoparticles have excellent biocompatibility, blood compatibility and macrophage targeting. These results show that SDP-VCAM-1/Cur/Cy5.5 nanoparticles can be used not only as dual imaging probe for magnetic resonance (MR) and fluorescence imaging, but also as carriers to deliver chemotherapeutic drugs to inflammatory tissue, thus providing a promising opportunity for the treatment, molecular imaging and targeted therapy in atherosclerosis due to their established specificity and safety.
Collapse
Affiliation(s)
- Pengda Qiu
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University No. 63, Duobao Road, Liwan District, Guangzhou 510150, Guangdong, P. R. China
| | - Yunhong Xu
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University No. 63, Duobao Road, Liwan District, Guangzhou 510150, Guangdong, P. R. China
| |
Collapse
|
28
|
Peng J, Liu Y, Zhang M, Liu F, Ma L, Yu CY, Wei H. One-pot fabrication of dual-redox sensitive, stabilized supramolecular nanocontainers for potential programmable drug release using a multifunctional cyclodextrin unit. J Control Release 2021; 334:290-302. [PMID: 33905803 DOI: 10.1016/j.jconrel.2021.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023]
Abstract
Facile engineering of β-cyclodextrin (β-CD)-based supramolecular nanocontainers with simultaneous enhanced extracellular stability and efficient intracellular biosignals-triggered destabilization generally suffers from multistep synthesis and tedious purification process, thus remains a significant challenge for the scale-up production and clinical translation of β-CD-based supramolecular nanomedicine. To address these issues, we reported in this study a one-pot preparation of dual-redox sensitive, stabilized supramolecular nanocontainers for potential programmable drug release by self-crosslinking of a multifunctional β-CD unit that integrates a host cavity for oxidation-mediated reversible complexation with ferrocence (Fc) guest molecule and lipoic acids (LAs)-decorated primary and secondary faces for reversible in-situ crosslinking by the reducible disulfide links. The resulting doxorubicin (DOX)-loaded nanoparticles showed, on one hand, enhanced colloidal stability and high DOX loading capacity with a drug loading content (DLC) of approximately 11.3% due to the crosslinked structure, and on the other hand, a programmable destruction of the supramolecular micelles triggered by a simultaneous adoption of intracellular glutathione (GSH) and reactive oxygen species (ROS) toward a complete structural destruction for promoted drug release with enhanced therapeutic efficiency. Notably, an optimized DOX-loaded micelle formation, DOX@CL P1 showed greater cytotoxicity with an IC50 of 2.94 ± 0.25 μg/mL than free DOX (6.00 ± 0.56 μg/mL) in Bel-7402 cancer liver cells, but a significantly reduced side effect relative to free DOX in L02 normal liver cells. In vivo animal study in Bel-7402 tumor-bearing BALB/c mice further confirmed prolonger elimination half-life time, efficient tumor accumulation, enhanced therapeutic efficiency and compromised systemic toxicity of this micelle construct. Therefore the multifunctional CD unit developed in this study offers an extremely straightforward and robust strategy with respect to dual-redox responsive, stabilized supramolecular nanocontainers with potential programmable controlled release properties for clinical translations.
Collapse
Affiliation(s)
- Jinlei Peng
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Miao Zhang
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Fangjun Liu
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Liwei Ma
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
29
|
Fan R, Chen C, Hou H, Chuan D, Mu M, Liu Z, Liang R, Guo G, Xu J. Tumor Acidity and Near‐Infrared Light Responsive Dual Drug Delivery Polydopamine‐Based Nanoparticles for Chemo‐Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202009733] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Caili Chen
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Huan Hou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Zhiyong Liu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruichao Liang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Jianguo Xu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
30
|
Rios De La Rosa JM, Spadea A, Donno R, Lallana E, Lu Y, Puri S, Caswell P, Lawrence MJ, Ashford M, Tirelli N. Microfluidic-assisted preparation of RGD-decorated nanoparticles: exploring integrin-facilitated uptake in cancer cell lines. Sci Rep 2020; 10:14505. [PMID: 32879363 PMCID: PMC7468293 DOI: 10.1038/s41598-020-71396-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study is about fine tuning the targeting capacity of peptide-decorated nanoparticles to discriminate between cells that express different integrin make-ups. Using microfluidic-assisted nanoprecipitation, we have prepared poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles with a PEGylated surface decorated with two different arginine-glycine-aspartic acid (RGD) peptides: one is cyclic (RGDFC) and has specific affinity towards αvβ3 integrin heterodimers; the other is linear (RGDSP) and is reported to bind equally αvβ3 and α5β1. We have then evaluated the nanoparticle internalization in two cell lines with a markedly different integrin fingerprint: ovarian carcinoma A2780 (almost no αvβ3, moderate in α5β1) and glioma U87MG (very high in αvβ3, moderate/high in α5β1). As expected, particles with cyclic RGD were heavily internalized by U87MG (proportional to the peptide content and abrogated by anti-αvβ3) but not by A2780 (same as PEGylated particles). The linear peptide, on the other hand, did not differentiate between the cell lines, and the uptake increase vs. control particles was never higher than 50%, indicating a possible low and unselective affinity for various integrins. The strong preference of U87MG for cyclic (vs. linear) peptide-decorated nanoparticles was shown in 2D culture and further demonstrated in spheroids. Our results demonstrate that targeting specific integrin make-ups is possible and may open the way to more precise treatment, but more efforts need to be devoted to a better understanding of the relation between RGD structure and their integrin-binding capacity.
Collapse
Affiliation(s)
- Julio M Rios De La Rosa
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Cambridge Enterprise Limited, University of Cambridge, The Hauser Forum, 3 Charles Babbage Road, Cambridge, CB3 0GT, UK.
| | - Alice Spadea
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Roberto Donno
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Enrique Lallana
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Yu Lu
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Cambridge, UK
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - M Jayne Lawrence
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Macclesfield, UK
| | - Nicola Tirelli
- North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163, Genova, Italy.
| |
Collapse
|
31
|
Wang W, Tang Z, Zhang Y, Wang Q, Liang Z, Zeng X. Mussel-Inspired Polydopamine: The Bridge for Targeting Drug Delivery System and Synergistic Cancer Treatment. Macromol Biosci 2020; 20:e2000222. [PMID: 32761887 DOI: 10.1002/mabi.202000222] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Polydopamine (PDA), a mussel-inspired molecule, has been recognized as attractive in cancer therapy due to a number of inherent advantages, such as good biocompatibility, outstanding drug-loading capacity, degradability, superior photothermal conversion efficiency, and low tissue toxicity. Furthermore, due to its strong adhesive property, PDA is able to functionalize various nanomaterials, facilitating the construction of a PDA-based multifunctional platform for targeted or synergistic therapy. Herein, recent PDA research, including targeted drug delivery, single-mode therapy, and diverse synergistic therapies against cancer, are summarized and discussed. For synergistic therapy, advanced developments are highlighted, such as photothermal/radiotherapy, chemo-/photothermal/gene therapy, photothermal/immune therapy, and photothermal/photodynamic/immune therapy. Finally, the challenges and promise of PDA for biomedical applications in the future are discussed.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuo Tang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiuxu Wang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Zhigang Liang
- Stomatology Department of Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|