1
|
Han X, Wang F, Ma Y, Lv X, Zhang K, Wang Y, Yan K, Mei Y, Wang X. TPG-functionalized PLGA/PCL nanofiber membrane facilitates periodontal tissue regeneration by modulating macrophages polarization via suppressing PI3K/AKT and NF-κB signaling pathways. Mater Today Bio 2024; 26:101036. [PMID: 38600919 PMCID: PMC11004206 DOI: 10.1016/j.mtbio.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiang Han
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Feiyang Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yuzhuo Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Xuerong Lv
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Kewei Zhang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Yue Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Ke Yan
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, 226000, People's Republic of China
| | - Xiaoqian Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China
| |
Collapse
|
2
|
Wan T, Zhang Q, Jin G, Xu S. Controlled delivery of 5-fluorouracil from monodisperse chitosan microspheres prepared by emulsion crosslinking. RSC Adv 2024; 14:11311-11321. [PMID: 38595722 PMCID: PMC11002727 DOI: 10.1039/d4ra01377h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
This work aims to determine the optimal conditions for emulsion cross-linking of chitosan (CHS) with various molecular weights using glutaraldehyde as a cross-linking agent to produce 5-fluorouracil-loaded CHS microspheres (5-FU/CHS). Their drug loading and encapsulation efficiencies are found to be in the range of 3.87-12.35% and 20.13-70.45%, respectively. The dynamic light scattering results show that 5-FU/CHS microspheres are micron-sized with a uniform size distribution, and the scanning electron microscopy results show that they are spherical. The results of thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrate that 5-FU is successfully incorporated into the microspheres. The in vitro release tests show that 5-FU/CHS have a prolonged, pH-responsive release pattern of 5-FU, and the cumulative release rate under acidic condition is much larger than that under neutral conditions. The drug release kinetic analysis further demonstrates that the release of 5-FU can be well described by the Fickian diffusion model.
Collapse
Affiliation(s)
- Tong Wan
- School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Qianqian Zhang
- School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Guocheng Jin
- Shanghai Flowridge Material Technology Co., Ltd Shanghai 201318 China
| | - Shiai Xu
- School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
- School of Chemical Engineering, Qinghai University Xining 810016 China
| |
Collapse
|
3
|
Youssef SH, Ganesan R, Amirmostofian M, Kim S, Polara R, Afinjuomo F, Song Y, Chereda B, Singhal N, Robinson N, Garg S. Printing a cure: A tailored solution for localized drug delivery in liver cancer treatment. Int J Pharm 2024; 651:123790. [PMID: 38190951 DOI: 10.1016/j.ijpharm.2024.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.
Collapse
Affiliation(s)
- Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Bradley Chereda
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Nimit Singhal
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; Dept of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia; Discipline of Medicine and the Faculty of Health Science, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Shirvalilou S, Khoee S, Khoei S, Karimi MR, Sadri E, Shirvaliloo M. Targeted magnetochemotherapy modified by 5-Fu-loaded thermally on/off switching nanoheaters for the eradication of CT26 murine colon cancer by inducing apoptotic and autophagic cell death. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
AbstractDespite significant breakthroughs in diagnosis and treatment of colorectal cancer (CRC), the extent of morbidity and mortality secondary to CRC is still concerning. In this study, we evaluated the efficacy of our new tumor-selective nanoplatforms at induction of apoptosis and autophagy, which was tested using active 5-fluorouracil (5-Fu)-based targeting of tumor cells in a BALB/c murine model of CRC combined with magnetic thermal therapy. Nanoparticles were synthesized and characterized by zeta sizer, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The cytotoxicity and tissue uptake of 5-Fu-loaded folic acid (Fa)-modified magnetic nanoparticles (5-Fu/MNPs-Fa) was assessed using MTT, ICP-OES, and HPLC. The rate of apoptosis and autophagy, as two major indicators of antitumor activity, was measured based on protein expression of Bax, Bcl2, Caspase 3, mTOR, P-mTOR, Beclin-1, and LC3B in CT-26 murine CRC, along with tumor volume and survival time. The spherical 5-Fu/MNPs-Fa exhibited sustained thermal on/off switching drug release and higher therapeutic index compared to free 5-Fu. Our de novo synthetized magnetic nanoheaters successfully delivered the therapeutic agent to the tumor site, enhanced the conversion of radio frequency energy to heat in tumor cells, exhibited higher antitumor efficiency based on Bax/Bcl2 ratio and overexpression of Beclin-1 and LC3B, increased the survival time, and decreased the tumor volume (P < 0.05). Our findings indicated that magnetochemotherapy (MHC) was substantially more effective than hyperthermia and/or chemotherapy alone. From a translational standpoint, the 5-Fu/MNPs-Fa would be a promising candidate sustained drug targeting system that could improve cancer cell therapy via inducing apoptosis and autophagy.
Graphical Abstract
Collapse
|
5
|
Youssef SH, Kim S, Khetan R, Afinjuomo F, Song Y, Garg S. The development of 5-fluorouracil biodegradable implants: A comparative study of PCL/PLGA blends. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Ali A, Madni A, Shah H, Jamshaid T, Jan N, Khan S, Khan MM, Mahmood MA. Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma. PLoS One 2023; 18:e0281004. [PMID: 36854019 PMCID: PMC9974133 DOI: 10.1371/journal.pone.0281004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023] Open
Abstract
The present study aimed to prepare solid lipid-based nanoparticles (SLNs) using Precirol® ATO 5 as solid lipid and Poloxamer 188 and Tween 80 as surfactant and co-surfactant respectively, and SLNs-derived gel for sustained delivery, enhanced in-vitro cytotoxicity, enhanced cellular uptake of 5-FU and enhanced permeation of 5-FU across the skin. The 5-FU-loaded SLNs were prepared by the hot melt encapsulation method and converted into SLN-derived gel using a gelling agent (Carbopol 940). The 5-FU-loaded SLNs had a particle size in the range of 76.82±1.48 to 327±4.46 nm, zeta potential between -11.3±2.11 and -28.4±2.40 mV, and entrapment efficiency (%) in range of 63.46±1.13 and 76.08±2.42. The FTIR analysis depicted that there was no chemical interaction between 5-FU and formulation components. Differential scanning calorimetric analysis showed thermal stability of 5-FU in the nanoparticles and powdered X-ray diffraction analysis revealed successful incorporation of 5-FU in nanoparticles. The in-vitro release study of 5-FU-loaded SLNs showed biphasic release behavior with initial burst release followed by sustained release over 48 hr. The 5-FU-loaded SLNs showed a greater cytotoxic effect on skin melanoma (B16F10 cells) and squamous cell carcinoma (A-431 cells) as compared to free 5-FU drug solution after 48 hr. Flow cytometry and fluorescence microscopy displayed enhanced quantitative and qualitative cellular uptake of SLNs. The SLNs formulation showed acceptable safety and biocompatible profile after an acute toxicity study in Wistar rats. Moreover, ex-vivo permeation studies depicted 2.13±0.076 folds enhanced flux of 5-FU-loaded SLN derived gel compared to 5-FU plain gel, and skin retention studies revealed target efficiency (%) 2.54±0.03 of 5-FU-loaded SLN derived gel compared to 5-FU plain gel.
Collapse
Affiliation(s)
- Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- * E-mail:
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, AJ&K, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahmad Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
8
|
Khan S, Madni A, Shah H, Jan N, Shafiq A, Basit A, Rai N, Ali A, Khan MM. Folate decorated lipid chitosan hybrid nanoparticles of 5-fluorouracil for enhanced anticancer efficacy against colon cancer. Int J Biol Macromol 2022; 222:497-508. [PMID: 36174854 DOI: 10.1016/j.ijbiomac.2022.09.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The study aimed to develop folate decorated lipid chitosan hybrid nanoparticles for targeted delivery of 5-fluorouracil in colon cancer by utilizing the overexpressed folate receptors on the surface of HT-29 and HCT 116 cancer cell lines. The developed formulations were prepared by the ionic gelation method with slight modifications. The developed formulations exhibited spherical morphology, smaller particle size (158 to 225 nm), zeta potential (32.24 to 35.95 mV), PDI (0.19 to 0.35), and high encapsulation efficiency (85.3 % to 94.2 %) with optimal physicochemical characteristics. The in vitro release showed a biphasic release pattern with an initial burst release followed by a sustained release for 48 h. Moreover, the in vitro cell line study revealed that FA-CLPN-2 exhibited an enhanced cellular uptake and greater cytotoxic effect in HT-29 and HCT 116 cell lines compared to non-targeted CLPN-2 and free drug solution due to the folate receptor facilitated endocytosis process. The in vivo toxicity study revealed the safety and biocompatibility of the developed formulations in biological systems. The stability study demonstrates the stability of the developed formulations. Overall, these results suggest that the folate decorated lipid chitosan hybrid nanoparticles could be used as a potential delivery system for tumor-targeted therapy with reduced side effects.
Collapse
Affiliation(s)
- Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJ&K, Pakistan
| | - Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
9
|
Akbar M, Badar M, Zaheer M. Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal-Organic Framework. ACS OMEGA 2022; 7:32588-32598. [PMID: 36120053 PMCID: PMC9475617 DOI: 10.1021/acsomega.2c04144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Along with the increasing incidence of cancer and drawbacks of traditional drug delivery systems (DDSs), developing novel nanocarriers for sustained targeted-drug release has become urgent. In this regard, metal-organic frameworks (MOFs) have emerged as potential candidates due to their structural flexibility, defined porosity, lower toxicity, and biodegradability. Herein, a FeMn-based ferromagnetic MOF was synthesized from a preassembled Fe2Mn(μ3-O) cluster. The introduction of the Mn provided the ferromagnetic character to FeMn-MIL-88B. 5-Fluoruracil (5-FU) was encapsulated as a model drug in the MOFs, and its pH and H2S dual-stimuli responsive controlled release was realized. FeMn-MIL-88B presented a higher 5-FU loading capacity of 43.8 wt % and rapid drug release behavior in a tumor microenvironment (TME) simulated medium. The carriers can rapidly release loaded drug of 70% and 26% in PBS solution (pH = 5.4) and NaHS solution (500 μM) within 24 h. The application of mathematical release models indicated 5-FU release from carriers can be precisely fitted to the first-order, second-order, and Higuchi models of release. Moreover, the cytotoxicity profile of the carrier against human embryonic kidney cells (HEK293T) suggests no adverse effects up to 100 μg/mL. The lesser toxic effect on cell viability can be attributed to the low toxicity values [LD50 (Fe) = 30 g·kg-1, (Mn) = 1.5 g·kg-1, and (terephthalic acid) = 5 g·kg-1] of the MOFs structural components. Together with dual-stimuli responsiveness, ferromagnetic nature, and low toxicity, FeMn-MIL-88B MOFs can emerge as promising carriers for drug delivery applications.
Collapse
Affiliation(s)
- Muhammad
Usman Akbar
- Gomal
Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail
Khan, KPK 29050, Pakistan
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences (LUMS), Lahore 54792, Pakistan
| | - Muhammad Badar
- Gomal
Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail
Khan, KPK 29050, Pakistan
| | - Muhammad Zaheer
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences (LUMS), Lahore 54792, Pakistan
| |
Collapse
|
10
|
Samy M, Abdallah HM, Awad HM, Ayoub MMH. In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03804-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Samy M, Abdallah HM, Awad HM, Ayoub MMH. Preparation, Characterization and In vitro Biological activity of 5-Fluorouracil Loaded onto poly (D, L-lactic-co-glycolic acid) Nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoscale devices offer a lot of potential in drug delivery because of their small size. The goal of this work was to increase the oral bioavailability of the anti-cancer hydrophilic drug as 5-fluorouracil (5-FU) by incorporating it into poly (D, L-lactide-co-glycolide) nanoparticles (PLGNPs) using the double emulsion process, 5-FU- PLGNPs nanoparticles were created. Various factors, such as drug, polymer, and stabilizer concentrations, were investigated for assembly in order to arrive at the most effective formulation of 5-FU-PLGNPs. PLGNPs had a drug encapsulation efficiency of 9.75 to 24.8%. The prepared nanoparticles had a spherical shape and an average size of 212.3–285 nm, as shown by TEM. The dispersion of the drug into the prepared PLGNPs was confirmed by XRPD and FTIR. The optimized nanoparticles (F225) had high encapsulation efficiency 24.8 ± 0.21%, low particles size 212.3 ± 48.2 nm with an appropriate PDI value of 0.448, and ZP of − 48.3 ± 2.7 mV. The molecular dispersion of the medication within the system was validated by thermal behavior studies (DSC). In vitro drug release from the best-selected formulations revealed a sustained release of nanoparticles, with slower release reported when lower PVA concentrations were utilized. Three 5-FU-PLGNPs formulations were tested for anticancer efficacy against cell cultures of HCT-116 (human colorectal carcinoma), MCF-7 (human breast carcinoma), and HepG2 (human hepatocellular carcinoma). The created formulations were examined for in vitro cytotoxic activity, revealing that they appeared to be promising effective anticancer formulations when compared to the positive controlled (doxorubicin).
Collapse
|
12
|
Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
In the current study, folic acid-conjugated PEG-PCL-PEG triblock copolymer were synthesized and loaded with 5-fluorouracil and magnetite nanoparticles (5-FU-SPION-PEG-PCL-PEG-FA) for targeted delivery of drug to HT29 human colon cancer cells and CT26 mouse colon cancer model. The nanoparticles were synthesized and characterized by nuclear magnetic resonance spectroscopy (NMR) and transmission electron microscopy (TEM). The cellular uptake of nanoparticles was assessed in vitro (on HUVEC and HT29) and in vivo (on CT26 colon tumor tissues). The cytotoxic effect of nanoparticles was assessed on human colon cell lines (HT29, Caco-2, HTC116, and SW480) and normal HUVEC cells. In addition, antitumor effects of nanoparticles were investigated based on tumor volume, survival time and protein expression of Bax and Bcl-2 on CT26 tumor-bearing BALB/c mice.
Results
Characterization of nanoparticles showed 5-FU-SPION-PEG-PCL-PEG-FA (5-FU-NPs-FA) nanoparticles had spherical shape with hydrodynamic diameter of 85 nm. The drug-release profile exhibited sustained pH-responsive release with cumulative release reaching approximately 23% after 24 h. Cellular uptake studies revealed that HT29 cancer cells absorb higher amount of 5-FU-NPs-FA as compared to HUVEC normal cells (P < 0.05). In addition, 5-FU-NPs-FA was found to be more antitumor efficient in comparison to free 5-FU based on Bax/Bcl2 ratio, survival rate of tumoral mouse and inhibitory tumor volume (P < 0.05).
Conclusions
The results suggested that 5-FU-NPs-FA could be considered as promising sustained drug delivery platform for in vitro and in vivo conditions, which may provide selective treatment of tumor cancer cells.
Graphical Abstarct
Collapse
|
13
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
14
|
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021; 8:783831. [PMID: 34926557 PMCID: PMC8671830 DOI: 10.3389/fnut.2021.783831] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, owing to well-controlled release, enhanced distribution and increased permeability, nanocarriers used for alternative drug and food-delivery strategies have received increasingly attentions. Nanocarriers have attracted a large amount of interest as potential carriers of various bioactive molecules for multiple applications. Drug and food-based delivery via polymeric-based nanocarriers and lipid-based nanocarriers has been widely investigated. Nanocarriers, especially liposomes, are more and more widely used in the area of novel nano-pharmaceutical or food-based design. Herein, we aimed to discuss the recent advancement of different surface-engineered nanocarriers type, along with cutting-edge applications for food and nanomedicine and highlight the alternative of phytochemical as nanocarrier. Additionally, safety concern of nanocarriers was also highlighted.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC) of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13111921. [PMID: 34834336 PMCID: PMC8621040 DOI: 10.3390/pharmaceutics13111921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, 5-fluorouracil (5-FU)-loaded pollens of Phoenix dactylifera and their coating with ERS was done and evaluated for the colon-targeted delivery of 5-FU to treat colon cancer. Sporopollenin exine microcapsules (SEMC) from the pollens of Phoenix dactylifera were extracted by the reflux method and 5-FU into SEMC was encapsulated by the vacuum-assisted loading method. 5-FU loaded SEMC was coated with Eudragit® RS-100 (ERS) by the organic solvent-evaporation technique under vacuum to avoid the discharge of 5-FU in the stomach and small intestine. Morphological and physicochemical characterization of drug-loaded SEMC (coated/uncoated) was performed by scanning electron microscopy (SEM), FTIR, XRD, and DSC. The encapsulation and drug loading were determined by the direct method, and an in vitro release study was performed in simulated gastric and intestinal fluids (SGF/SIF). The colon-specific delivery of 5-FU from the SEMC was assessed in terms of pharmacokinetics and gastrointestinal tract distribution after oral administration in rats. The successful encapsulation and loading of 5-FU into SEMC by a vacuum-assisted loading technique and its coating with ERS by a solvent-evaporation technique were achieved. SEM images of uncoated SEMC have shown porous structures, and coating with ERS reserved their morphology with a smooth surface and discrete microstructures and the 5% w/v ERS acetone solution. ERS-coated SEMC sustained the release of 5-FU until 24 h in SIF, while it was up to 12 h only from uncoated SEMC. The maximum plasma concentration (Cmax) of 5-FU from uncoated SEMC was 102.82 μg/mL after 1 h, indicating a rapid release of 5-FU in the upper gastrointestinal tract. This concentration decreased quickly with a half-life of 4 h, AUC0-t was 264.1 μg/mL.h, and MRT0-inf was 5.2 h. The Cmax of 5-FU from ERS-coated SEMC was 19.47 μg/mL at 16 h. The Cmax of 5-FU in small intestines was 406.2 μg/g at 1 h from uncoated SEMC and 1271.5 μg/g at 12 h from coated SEMC. Conclusively, a 249.9-fold higher relative bioavailability of 5-FU was achieved with the ERS-coated SEMC in colon tissues than that from uncoated SEMC.
Collapse
|
16
|
Khan S, Aamir MN, Madni A, Jan N, Khan A, Jabar A, Shah H, Rahim MA, Ali A. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci 2021; 284:119909. [PMID: 34450169 DOI: 10.1016/j.lfs.2021.119909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to develop and characterize poly (ɛ-caprolactone) (PCL) based lipid polymer hybrid nanoparticles for sustained delivery and in-vitro anti-cancer activity in MCF-7 and HeLa cells cancer cell line. MATERIALS AND METHODS The nanoprecipitation method was used for the development of 5-fluorouracil loaded lipid polymer hybrid nanoparticles (LPHNPs). The developed LPHNPs were characterized for physicochemical characteristics and the anti-cancer effect was evaluated in MCF-7 and HeLa cells. SIGNIFICANT FINDINGS Six formulations having fixed amount of drug and varied lipid, polymer and emulsifier concentrations were prepared. The particle size was in the range of 174 ± 4 to 267 ± 2.65 nm, entrapment efficiency (92.87 ± 0.594 to 94.13 ± 0.772%), negative zeta potential, optimum polydispersity index and spherical shape. FTIR analysis shows no chemical interaction among the formulation components, DSC analysis reveals the disappearance of 5-FU melting endotherm in the developed LPHNPs suggesting amorphization of 5-FU in the developed system, XRD analysis indicates successful encapsulation of the drug in the lipid polymer matrix. The in-vitro release shows a biphasic release pattern with an initial burst release followed by a sustained release profile for 72 h. The drug loaded LPHNPs exhibited a greater cytotoxic effect than 5-FU solution due to sustained release and increased cellular internalization. The acute toxicity study revealed the safety of the developed carrier system for potential delivery of chemotherapeutic agents. SIGNIFICANCE The developed LPHNPs of 5-fluorouracil will provide the sustained release behavior of 5-fluorouracil to maximize the therapeutic efficacy and minimize the dose related toxicity.
Collapse
Affiliation(s)
- Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
17
|
Abd-Algaleel SA, Metwally AA, Abdel-Bar HM, Kassem DH, Hathout RM. Synchronizing In Silico, In Vitro, and In Vivo Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Mol Pharm 2021; 18:3763-3776. [PMID: 34460250 DOI: 10.1021/acs.molpharmaceut.1c00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sesamol is a sesame seed constituent with reported activity against many types of cancer. In this work, two types of nanocarriers, solid lipid nanoparticles (SLNs) and polymeric nanoparticles (PNs), were exploited to improve sesamol efficiency against the glioma cancer cell line. The ability of the proposed systems for efficient brain targeting intranasally was also inspected. By the aid of two docking programs, the virtual loading pattern inside these nanocarriers was matched to the real experimental results. Interactions involved in sesamol-carrier binding were also assessed, followed by a discussion of how different scoring functions account for these interactions. The study is an extension of the computer-assisted drug formulation design series, which represents a promising initiative for an upcoming industrial innovation. The results proved the power of combined in silico tools in predicting members with the highest sesamol payload suitable for delivering a sufficient dose to the brain. Among nine carriers, glyceryl monostearate (GMS) and polycaprolactone (PCL) scored the highest sesamol payload practically and computationally. The EE % was 66.09 ± 0.92 and 61.73 ± 0.47 corresponding to a ΔG (binding energy) of -8.85 ± 0.16 and -5.04 ± 0.11, respectively. Dynamic light scattering evidenced the formation of 215.1 ± 7.2 nm and 414.25 ± 1.6 nm nanoparticles, respectively. Both formulations demonstrated an efficient cytotoxic effect and brain-targeting ability compared to the sesamol solution. This was evidenced by low IC50 (38.50 ± 10.37 μM and 27.81 ± 2.76 μM) and high drug targeting efficiency (7.64 ± 1.89-fold and 13.72 ± 4.1-fold) and direct transport percentages (86.12 ± 3.89 and 92.198 ± 2.09) for GMS-SLNs and PCL-PNs, respectively. The results also showed how different formulations, having different compositions and characteristics, could affect the cytotoxic and targeting ability.
Collapse
Affiliation(s)
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat, 13110 Kuwait, Kuwait
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menofia 32897, Egypt
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
18
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
19
|
Malviya R, Awasthi R, Sharma PK, Dubey SK. Stabilization of Etoricoxib Nanosuspension Using Acacia chundra Gum and Copolymers: Preparation, Characterization, and In Vitro Cytotoxic Study. Assay Drug Dev Technol 2021; 19:306-321. [PMID: 34015226 DOI: 10.1089/adt.2020.1054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Present communication deals with the stabilization of etoricoxib nanosuspension using Acacia chundra gum and its acrylamide-grafted and carboxymethylated copolymers. Acrylamide grafting and carboxymethylation of A. chundra gum were carried out and synthesized copolymers were characterized. Ultrasound-assisted solvent-antisolvent method was utilized to co-precipitate the stabilizers over etoricoxib nanoprecipitates. A 32 full factorial design was used to evaluate the effect of independent variables, that is, the concentration of drug and stabilizer over the dependent variables, that is, particle size (PS), and entrapment efficiency (EE%) of nanoparticles. The effect of process parameters over super saturation, nucleation, and PS were studied and the role of mixing and ultrasound radiation was correlated. FTIR, DSC, and 1H NMR analysis showed a significant difference between the copolymers. The application of stabilizers leads to the synthesis of small, spherical, no aggregated, and composite nanoparticles. PS growth analysis after 45 days showed no sign of "Ostwald repining" and aggregation. Optimized formulations prepared using A. chundra gum (formulation K9), acrylamide-grafted (formulation A8), and carboxymethylated (formulation C1) copolymers showed t80% in 190, 270, and 170 min, respectively. Cytotoxic studies showed that the formulation A8 had better control over cell growth than the pure drug against MCF-7 cell line. The results indicated that the A. chundra gum and its acrylamide and carboxymethylated copolymers can be easily synthesized and utilized for the fabrication of stabilized nanosuspension.
Collapse
Affiliation(s)
- Rishabha Malviya
- Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India.,Department of Pharmacy, Uttarakhand Technical University, Dehradun, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Pramod Kumar Sharma
- Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, India
| | | |
Collapse
|
20
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Chen YQ, Zhu WT, Lin CY, Yuan ZW, Li ZH, Yan PK. Delivery of Rapamycin by Liposomes Synergistically Enhances the Chemotherapy Effect of 5-Fluorouracil on Colorectal Cancer. Int J Nanomedicine 2021; 16:269-281. [PMID: 33469286 PMCID: PMC7811466 DOI: 10.2147/ijn.s270939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Rapamycin is a promising agent for treating tumors, but clinical applications of rapamycin are limited due to its poor water solubility and low bioavailability. This paper constructs a liposome delivery system for rapamycin to improve the effect in treating colorectal cancer. Methods We prepared the rapamycin liposomes using the ethanol injection method. The cellular uptake and biodistribution were detected by LC-MS and in vivo imaging system. MTT assay, transwell migration experiment, flow cytometry, and Western blot analysis evaluated the antitumor effect of rapamycin liposomes in vitro. Furthermore, HCT-116 tumor-bearing mice were used to assess the therapeutic efficacy of rapamycin liposomes in vivo. Results The prepared rapamycin liposomes had a particle size of 100±5.5 nm and with a narrow size distribution. In vitro cellular uptake experiments showed that the uptake of rapamycin liposomes by colorectal cells was higher than that of free rapamycin. Subsequently, in vivo imaging experiments also demonstrated that rapamycin liposomes exhibited higher tumor accumulation. Therefore, the ability of rapamycin liposomes to inhibit tumor proliferation, migration and to induce tumor apoptosis is superior to that of free rapamycin. We also demonstrated in vivo good antitumor efficacy of the rapamycin liposomes in HCT-116 xenograft mice. In addition, rapamycin liposomes and 5-FU can synergistically improve the efficacy of colorectal cancer via the Akt/mTOR and P53 pathways. Conclusion Collectively, rapamycin liposomes are a potential treatment for colorectal cancer, as it not only improves rapamycin’s antitumor effect but also synergistically enhances 5-FU’s chemotherapy effect.
Collapse
Affiliation(s)
- Yi-Qing Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Wen-Ting Zhu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Cai-Yan Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhong-Wen Yuan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhen-Hua Li
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Peng-Ke Yan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| |
Collapse
|
23
|
Wang Z, Dong J, Zhao Q, Ying Y, Zhang L, Zou J, Zhao S, Wang J, Zhao Y, Jiang S. Gold nanoparticle‑mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol Med Rep 2020; 22:4475-4484. [PMID: 33173972 PMCID: PMC7646735 DOI: 10.3892/mmr.2020.11580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel is a potent antineoplastic agent, but poor solubility and resistance have limited its use. Gold nanoparticles (AuNPs) are widely studied as drug carriers because they can be engineered to prevent drug insolubility, carry nucleic acid payloads for gene therapy, target specific tumor cell lines, modulate drug release and amplify photothermal therapy. Consequently, the conjugation of paclitaxel with AuNPs to improve antiproliferative and pro‑apoptotic potency may enable improved clinical outcomes. There are currently a number of different AuNPs under development, including simple drug or nucleic acid carriers and targeted AuNPs that are designed to deliver therapeutic payloads to specific cells. The current study reviewed previous research on AuNPs and the development of AuNP‑based paclitaxel delivery.
Collapse
Affiliation(s)
- Zhiguang Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jianyu Dong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiaojiajie Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Lijie Zhang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Junrong Zou
- Institute of Urology, The First Affiliated Hospital of Gan'nan Medical University, Ganzhou, Jiangxi 341001, P.R. China
| | - Shuqi Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jiuju Wang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Yuan Zhao
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
24
|
Omer ME, Halwani M, Alenazi RM, Alharbi O, Aljihani S, Massadeh S, Al Ghoribi M, Al Aamery M, Yassin AE. Novel Self-Assembled Polycaprolactone-Lipid Hybrid Nanoparticles Enhance the Antibacterial Activity of Ciprofloxacin. SLAS Technol 2020; 25:598-607. [PMID: 32734812 DOI: 10.1177/2472630320943126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ciprofloxacin (CIP), a widely used antibiotic, is a poor biopharmaceutical resulting in low bioavailability. We optimized a CIP polymer-lipid hybrid nanoparticle (CIP-PLN) delivery system to enhance its biopharmaceutical attributes and the overall therapeutic performance. CIP-PLN formulations were prepared by a direct emulsification-solvent-evaporation method. Varying the type and ratio of lipid was tried to optimize a CIP-PLN formulation. All the prepared formulations were evaluated for their particle size, polydispersity index, zeta potential, physical stability, and drug entrapment efficiency. The drug in vitro release profile was also studied. Antibacterial activities were tested by the agar diffusion method for all CIP-PLN formulations against an Escherichia coli clinical bacterial isolate (EC04). CIP-PLN formulations showed average sizes in the range of 133.9 ± 1.7 nm to 217.1 ± 0.8 nm, exhibiting high size uniformity as indicated by polydispersity indices lower than 0.25. The entrapment efficiency was close to 80% for all formulations. The differential scanning calorimetry (DSC) thermograms indicated the existence of CIP in the amorphous state in all PLN formulations. Fourier transform infrared spectra indicated deep incorporation of molecular CIP within the polymer matrix. The release profile of CIP from PLN formulas showed a uniform prolonged drug profile, extended for a week from most formulations with a zero-order kinetics. The antibacterial activity of CIP-PLN formulations showed significantly higher antibacterial activity only with F4 containing lecithin as the lipid component. In conclusion, we successfully optimized a CIP-PLN formulation with a low nanoparticle size in a close range, high percentage of entrapment efficiency and drug loading, uniform prolonged release rate, and higher antibacterial activity against the EC04 clinical isolate.
Collapse
Affiliation(s)
- Mustafa E Omer
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Majed Halwani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Rayan M Alenazi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Omar Alharbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Shokran Aljihani
- King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Majed Al Ghoribi
- King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Manal Al Aamery
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Massadeh S, Omer ME, Alterawi A, Ali R, Alanazi FH, Almutairi F, Almotairi W, Alobaidi FF, Alhelal K, Almutairi MS, Almalik A, Obaidat AA, Alaamery M, Yassin AE. Optimized Polyethylene Glycolylated Polymer-Lipid Hybrid Nanoparticles as a Potential Breast Cancer Treatment. Pharmaceutics 2020; 12:pharmaceutics12070666. [PMID: 32679809 PMCID: PMC7408428 DOI: 10.3390/pharmaceutics12070666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The aim of this work is to optimize a polyethylene glycolated (PEGylated) polymer–lipid hybrid nanoparticulate system for the delivery of anastrozole (ANS) to enhance its biopharmaceutical attributes and overall efficacy. Methods: ANS loaded PEGylated polymer–lipid hybrid nanoparticles (PLNPs) were prepared by a direct emulsification solvent evaporation method. The physical incorporation of PEG was optimized using variable ratios. The produced particles were evaluated to discern their particle size and shape, zeta-potential, entrapment efficiency, and physical stability. The drug-release profiles were studied, and the kinetic model was analyzed. The anticancer activity of the ANS PLNPs on estrogen-positive breast cancer cell lines was determined using flow cytometry. Results: The prepared ANS-PLNPs showed particle sizes in the range of 193.6 ± 2.9 to 218.2 ± 1.9 nm, with good particle size uniformity (i.e., poly-dispersity index of around 0.1). Furthermore, they exhibited relatively low zeta-potential values ranging from −0.50 ± 0.52 to 6.01 ± 4.74. The transmission electron microscopy images showed spherical shape of ANS-PLNPs and the compliance with the sizes were revealed by light scattering. The differential scanning calorimetry DSC patterns of the ANS PLNPs revealed a disappearance of the characteristic sharp melting peak of pure ANS, supporting the incorporation of the drug into the polymeric matrices of the nanoparticles. Flow cytometry showed the apoptosis of MCF-7 cell lines in the presence of ANS-PLNPs. Conclusion: PEGylated polymeric nanoparticles presented a stable encapsulated system with which to incorporate an anticancer drug (ANS) with a high percentage of entrapment efficiency (around 80%), good size uniformity, and induction of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mustafa E Omer
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Asmaa Alterawi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia;
| | - Fayez H Alanazi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Fares Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Wejdan Almotairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Faris F Alobaidi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Khulud Alhelal
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Mansour S Almutairi
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
| | - Abdulaziz Almalik
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Aiman A. Obaidat
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia; (S.M.); (M.S.A.)
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
- Correspondence: (M.A.); (A.E.Y.)
| | - Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (M.E.O.); (A.A.); (F.H.A.); (F.A.); (W.A.); (F.F.A.); (K.A.); (A.A.O.)
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
- Correspondence: (M.A.); (A.E.Y.)
| |
Collapse
|
26
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
27
|
Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1107-1126. [DOI: 10.1080/09205063.2020.1743946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Samira Khaledi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Ghasemi Toudeshkchouei M, Zahedi P, Shavandi A. Microfluidic-Assisted Preparation of 5-Fluorouracil-Loaded PLGA Nanoparticles as a Potential System for Colorectal Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1483. [PMID: 32218241 PMCID: PMC7177286 DOI: 10.3390/ma13071483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
This work aims at fabricating 5-fluorouracil (5-FU)-loaded poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) using a microfluidic (MF) technique, with potential for use in colorectal cancer therapy. In order to achieve 5-FU-loaded NPs with an average diameter of approximately 119 nm, the parameters of MF process with fork-shaped patterns were adjusted as follows: the ratio of polymer to drug solutions flow rates was equal to 10 and the solution concentrations of PLGA as carrier, 5-FU as anti-cancer drug and poly (vinyl alcohol) (PVA) as surfactant were 0.2 (% w/v), 0.01 (% w/v) and 0.15 (% w/v), respectively. In this way, a drug encapsulation efficiency of approximately 95% into the PLGA NPs was obtained, due to the formation of a hydrodynamic flow focusing phenomenon through the MF chip. A performance evaluation of the NP samples in terms of the drug release, cytotoxicity and cell death was carried out. Finally, by analyzing the results after induction of cell death and 4', 6-diamidino-2-phenylin-dole (DAPI) staining, MF-fabricated NPs containing 5-FU [0.2 (% w/v) of PLGA] revealed the dead cell amounts of 10 and 1.5-fold higher than the control sample for Caco2 and SW-480, respectively.
Collapse
Affiliation(s)
- Mahtab Ghasemi Toudeshkchouei
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417613131, Iran;
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417613131, Iran;
| | - Amin Shavandi
- BioMatter Unit-Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|