1
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
3
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
4
|
Kalantari L, Hajjafari A, Goleij P, Rezaee A, Amirlou P, Farsad S, Foroozand H, Arefnezhad R, Rezaei-Tazangi F, Jahani S, Yazdani T, Nazari A. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024; 90:102523. [PMID: 39154502 DOI: 10.1016/j.tice.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Colon cancer (CC) stands as one of the most common malignancies related to the gastrointestinal system, whose increasing incidence and death rates have been reported all over the world. Standard treatments for fighting cancers like CC comprise surgical approaches, chemotherapy, and radiotherapy, which are suggested by clinicians according to patients' conditions and disease stages. However, patients who utilize these modalities may suffer from serious side effects and adverse outcomes, for example, toxicity and tumor recurrence, as well as a low 5-year survival rate. The present shreds of evidence showed that mesenchymal stem cells (MSCs) can have a suitable capacity for treating different health problems, especially neoplasms. These multipotent stem cells can be isolated from several sources, such as the umbilical cord, bone marrow, adipose tissue, and placenta. Among these mesenchymal sources, umbilical cord-MSCs have gathered much attention in scientific societies due to their advantages (e.g., low immunogenicity, lack of ethical problems, and easy collection). These days, the efficacy of umbilical cord-MSCs and umbilical cord-MSCs-based strategies, such as conditioned medium, extracellular vesicles, and exosomes, on CC have been explored, and promising findings have been stated. Therefore, in this review, we aimed to summarize and debate evidence regarding the effects of UC-MSCs and their related products on CC with a focus on molecular and cellular mechanisms involved in its treatment and pathogenesis of this malignant tumor.
Collapse
Affiliation(s)
- Leila Kalantari
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farsad
- Faculty of Basic Science, Islamic Azad University, Qom, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saleheh Jahani
- Pathology department, University of California, SanDiego, United States
| | - Taha Yazdani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Peng H, Du F, Wang J, Wu Y, Wei Q, Chen A, Duan Y, Shi S, Zhang J, Yu S. Adipose-Derived Stem-Cell-Membrane-Coated PLGA-PEI Nanoparticles Promote Wound Healing via Efficient Delivery of miR-21. Pharmaceutics 2024; 16:1113. [PMID: 39339150 PMCID: PMC11434648 DOI: 10.3390/pharmaceutics16091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
miRNAs have been shown to be involved in the regulation of a variety of physiological and pathological processes, but their use in the treatment of diseases is still limited due to their instability. Biomimetic nanomaterials combine nanomaterials with cellular components that are readily modifiable and biocompatible, making them an emerging miRNA delivery vehicle. In this study, adipose-derived MSC membranes were wrapped around PLGA-PEI loaded with miR-21 through co-extrusion and later transplanted into C57BL/6 mice wounds. The wound-healing rate, epithelialization, angiogenesis, and collagen deposition were assessed after treatment and corroborated in vitro. Our study demonstrated that m/NP/miR-21 can promote wound healing in terms of epithelialization, dermal reconstruction, and neovascularization, and it can regulate the corresponding functions of keratinocytes, fibroblasts, and vascular endothelial cells. m/NP/miR-21 can inhibit the expression of PTEN, a gene downstream of miR-21, and increase the phosphorylation activation of AKT, which can then regulate the functions of fibroblasts. In conclusion, this provides a new approach to therapy for skin wounds using microRNA transporters and biomimetic nanoparticles.
Collapse
Affiliation(s)
- Huiyu Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Qian Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Ai Y, Tian Y, Qiao J, Wang C, Li H. " Yin-Yang philosophy" for the design of anticancer drug delivery nanoparticles. BIOMATERIALS TRANSLATIONAL 2024; 5:144-156. [PMID: 39351167 PMCID: PMC11438609 DOI: 10.12336/biomatertransl.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 10/04/2024]
Abstract
Understanding the in vivo transport process provides guidelines for designing ideal nanoparticles (NPs) with higher efficacy and fewer off-target effects. Many factors, such as particle size, morphology, surface potential, structural stability, and etc., may influence the delivering process of NPs due to the existence of various physiological barriers within the body. Herein, we summarise the distinct influences of NP physicochemical properties on the four consecutive in vivo transport steps: (1) navigating with bloodstream within blood vessels, (2) transport across vasculature walls into tumour tissues, (3) intratumoural transport through the interstitial space, and (4) cellular uptake & intracellular delivery by cancerous cells. We found that the philosophy behind the current consensus for NP design has certain similarities to the "Yin-Yang" theory in traditional Chinese culture. Almost all physicochemical properties, regardless of big or small sizes, long or short length, positive or negative zeta potentials, are double-edged swords. The balance of potential benefits and side effects, drug selectivity and accessibility should be fully considered when optimising particle design, similar to the "Yin-Yang harmony". This paper presents a comprehensive review of the advancements in NPs research, focusing on their distinct features in tumour targeting, drug delivery, and cell uptake. Additionally, it deliberates on future developmental trends and potential obstacles, thereby aiming to uncover the ways these characteristics influence the NPs' biological activity and provide theoretical guidance for the targeted delivery of NPs.
Collapse
Affiliation(s)
- Yanwen Ai
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Yuan Tian
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Changnan Wang
- School of Lifesciences, Shanghai University, Shanghai, China
| | - Huafei Li
- School of Lifesciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Baydar SY, Ay HF, Cakir R. Frontiers of stem cell engineering for nanotechnology-mediated drug delivery systems. ADMET AND DMPK 2024; 12:225-237. [PMID: 38720930 PMCID: PMC11075162 DOI: 10.5599/admet.2160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background and purpose Cell biology approaches have gained a successful integration, development and application of nanotechnology with stem cell engineering and have led to the emergence of a new interdisciplinary field known as stem cell nanotechnology (SCN). Recent studies showed the potential and the advancement of developments for SCN applications in drug delivery systems. Cancer, neurodegenerative, muscle and blood diseases, cell and gene therapies, and tissue engineering and regenerative medicine applications are the important targets of SCN. Experimental approach In this overview, we searched the literature using the common online websites for research and read the open access, full-text available articles since 2013. Key results The studies vary according to the type of disease they targeted and the strategies they proposed, whether diagnostic or therapeutic. In addition to the use of stem cells, the utilisation of their membranes, secretomes, exosomes and extracellular vesicles with an appropriate nanotechnology strategy is also an aspect of the research. Conclusion This brief overview of stem cell nanotechnology over the last ten years aims to provide insight into the frontiers of stem cell engineering for nanotechnology-mediated drug delivery systems.
Collapse
Affiliation(s)
- Serap Yesilkır Baydar
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Istanbul Gelisim University, Avcilar, Istanbul, Türkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Türkiye
| | - Hatice Feyzan Ay
- Department of Bioengineering, Faculty of Chemistry and Metallurgical, Yildiz Technical University, Istanbul, Türkiye
| | - Rabia Cakir
- Department of Bioengineering, Faculty of Chemistry and Metallurgical, Yildiz Technical University, Istanbul, Türkiye
- Biotechnology Institute, Health Institutes of Türkiye (TUSEB), Istanbul, Türkiye
| |
Collapse
|
8
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
9
|
Li Y, Liu T, Li X, Yang M, Liu T, Bao J, Jiang M, Hu L, Wang Y, Shao P, Jiang J. Combined surface functionalization of MSC membrane and PDA inhibits neurotoxicity induced by Fe 3O 4 in mice based on apoptosis and autophagy through the ASK1/JNK signaling pathway. Aging (Albany NY) 2023; 15:6933-6949. [PMID: 37470690 PMCID: PMC10415563 DOI: 10.18632/aging.204884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The extensive utilization of iron oxide nanoparticles in medical and life science domains has led to a substantial rise in both occupational and public exposure to these particles. The potential toxicity of nanoparticles to living organisms, their impact on the environment, and the associated risks to human health have garnered significant attention and come to be a prominent area in contemporary research. The comprehension of the potential toxicity of nanoparticles has emerged as a crucial concern to safeguard human health and facilitate the secure advancement of nanotechnology. As nanocarriers and targeting agents, the biocompatibility of them determines the use scope and application prospects, meanwhile surface modification becomes an important measure to improve the biocompatibility. Three different types of iron oxide nanoparticles (Fe3O4, Fe3O4@PDA and MSCM-Fe3O4@PDA) were injected into mice through the tail veins. The acute neurotoxicity of them in mice was evaluated by measuring the levels of autophagy and apoptosis in the brain tissues. Our data revealed that iron oxide nanoparticles could cause nervous system damage by regulating the ASK1/JNK signaling pathway. Apoptosis and autophagy may play potential roles in this process. Exposure to combined surface functionalization of mesenchymal stem cell membrane and polydopamine showed the neuroprotective effect and may alleviate brain nervous system disorders.
Collapse
Affiliation(s)
- Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tianxin Liu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Jindian Bao
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Miao Jiang
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Lingling Hu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Charvátová H, Plichta Z, Hromádková J, Herynek V, Babič M. Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study. Pharmaceutics 2023; 15:1982. [PMID: 37514168 PMCID: PMC10384990 DOI: 10.3390/pharmaceutics15071982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.
Collapse
Affiliation(s)
- Hana Charvátová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague, Czech Republic
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague, Czech Republic
| | - Vít Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague, Czech Republic
| | - Michal Babič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague, Czech Republic
| |
Collapse
|
11
|
Barreto da Silva T, Dias EA, Cardoso LMDF, Gama JFG, Alves LA, Henriques-Pons A. Magnetic Nanostructures and Stem Cells for Regenerative Medicine, Application in Liver Diseases. Int J Mol Sci 2023; 24:ijms24119293. [PMID: 37298243 DOI: 10.3390/ijms24119293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.
Collapse
Affiliation(s)
- Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Evellyn Araújo Dias
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | | | - Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastácio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
12
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic- co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8:e10441. [PMID: 36925703 PMCID: PMC10013795 DOI: 10.1002/btm2.10441] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membrane-camouflaged NPs.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of PharmacyMirpur University of Science and Technology (MUST)MirpurPakistan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of PharmacyThe Islamia University of BahawalpurBahawalpurPakistan
| | - Derya Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
| | - Mohammad F. Bostanudin
- College of PharmacyAl Ain UniversityAbu DhabiUnited Arab Emirates
- AAU Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUnited Arab Emirates
| | - Christopher H. Contag
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMichiganUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM–Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM–National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
14
|
Cell membrane-camouflaged DOX-loaded β-glucan nanoparticles for highly efficient cancer immunochemotherapy. Int J Biol Macromol 2023; 225:873-885. [PMID: 36402393 DOI: 10.1016/j.ijbiomac.2022.11.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biomimetics plays an important role in cancer treatment since it can prolong the circulation of nanoparticles, enhance their delivery and retention in target tissues, and reduce the systemic toxicity of drugs and their carriers. In this study, we developed a biomimetic nanosystem consisting of chemotherapeutic and immunotherapeutic agents wrapped in cell membranes. Specifically, the anti-tumor drug doxorubicin (DOX) was loaded into a bacterial-derived immunomodulatory agent (low molecular weight curdlan, lCUR), and the lCUR-DOX was further wrapped in the red blood cell membrane for camouflage and prolonged circulation. The successful preparation of the lCUR-DOX@RBC nanosystem was supported by various optical and morphological characterizations. In vitro studies indicated that the nanosystem can escape uptake by macrophages, inhibit the invasion of tumor cells, and reprogram M2 macrophages with an immunosuppressive phenotype into M1 macrophages with an immunopromoting phenotype via the MAPK signaling pathway while promoting the phagocytosis of macrophages. In vivo studies showed that the nanosystem effectively inhibits tumor growth in the A-375 tumor-bearing mouse model. Taken together, the above results support further development of the lCUR-DOX@RBC platform for cancer immunochemotherapy in clinical applications.
Collapse
|
15
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Tang X, Zhang Y, Liu X, Liu M. Application of mesenchymal stem cells in tumor therapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1444-1453. [PMID: 36411696 PMCID: PMC10930360 DOI: 10.11817/j.issn.1672-7347.2022.220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 06/16/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that exist widely in the human body, which can self-renewal and differentiate into different types of cell. Due to its advantages of tumor tissue tropism and easy to be engineered, it has been widely used in cancer treatment research recently. However, the tumor-promoting or anti-tumor effect of MSCs is controversial, especially for unmodified MSCs. Therefore, researchers are more inclined to use MSCs as carriers to engineer them. With the deepening in understanding of vesicles, it is found that the vesicles derived from MSCs seem to have greater advantages as carriers. Although the current research of MSCs in the treatment of tumors has been initiated in the clinic, there are still many problems to be solved in the pre-clinical application.
Collapse
Affiliation(s)
- Xiangling Tang
- Genetics Laboratory, College of Life Science, Central South University, Changsha 410078.
| | - Yu Zhang
- Genetics Laboratory, College of Life Science, Central South University, Changsha 410078
| | - Xionghao Liu
- Hunan Key Laboratory of Medical Genetics, Changsha 410078
| | - Mujun Liu
- Hunan Key Laboratory of Basic and Applied Hematology, Changsha 410008, China.
| |
Collapse
|
17
|
Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics 2022; 12:7080-7107. [PMID: 36276645 PMCID: PMC9576611 DOI: 10.7150/thno.75937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Digestive system cancer is the most common cause of cancer death in the world. Although cancer treatment options are increasingly diversified, the mortality rate of malignant cancer of the digestive system remains high. Therefore, it is necessary to explore effective cancer treatment methods. Recently, biomimetic nanoparticle delivery systems based on natural cells that organically integrate the low immunogenicity, high biocompatibility, cancer targeting, and controllable, versatile functionality of smart nanocarrier design with natural cells have been expected to break through the bottleneck of tumor targeted therapy. In this review, we focus on the dynamic changes and complex cellular communications that occur in vivo in natural cells based vehicles. Recent studies on the development of advanced targeted drug delivery systems using the dynamic behaviors such as specific surface protein affinity, morphological changes, and phenotypic polarization of natural cells are summarized. In addition to drug delivery mediated by dynamic behavior, functional "delivery" based on the natural cell themselves is also involved. Aiming to make the best use of the functions of cells, providing clues for the development of advanced drug delivery platforms.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Fu Qi
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
18
|
Stem cell membrane-coated abiotic nanomaterials for biomedical applications. J Control Release 2022; 351:174-197. [PMID: 36103910 DOI: 10.1016/j.jconrel.2022.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Nanoscale materials have been extensively employed for diagnostic and therapeutic purposes. However, the developed nanosystems still suffer from some limitations, namely the rapid elimination by the immune system, lack of targeting to specific cells, and insufficient biocompatibility. Therefore, novel strategies based upon a biomimetic approach have received attention to improving the pharmacokinetics and safety profile of nanosystems. One promising strategy is the application of a biomimetic coating consisting of cell membranes derived from different cell types onto nanoparticle cores. Stem cells have been investigated to develop targeted nanodevices owing to their excellent intrinsic tissue-specific homing features, protecting them from the immune system to reach the sites of inflammation. This targeting ability is conferred by a surface repertoire of stem cell-associated biomolecules. Such nanoscopical materials offer sustained circulation and boosted drug accumulation at target sites, augmenting therapeutic efficacy and safety. Additionally, the coating of nanoparticles with cell membranes acts as a camouflage mechanism to increase their circulation time. The current review explores the particular features of stem cell membrane coating as multifunctional biomimetic surface functionalization agents to camouflage nanoparticle cores. Biomedical applications of engineered stem cell membrane-coated nanoparticles, challenges in clinical translation, and their future prospects are addressed.
Collapse
|
19
|
Shen M, Wu X, Zhu M, Yi X. Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomater Sci 2022; 10:5756-5785. [PMID: 36017968 DOI: 10.1039/d2bm01044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown significant advantages in cancer theranostics, owing to their enhanced permeability and retention effect in tumors and multi-function integration capability. Biological membranes, which are collected from various cells and their secreted membrane structures, can further be applied to establish membrane-based nanomaterials with perfect biocompatibility, tumor-targeting capacity, immune-stimulatory activity and adjustable versatility for cancer therapy. In this review, according to their source, membranes are divided into four groups: (1) cell membranes; (2) secretory membranes; (3) engineered membranes; and (4) hybrid membranes. First, cell membranes can be extracted from natural cells of the body, tumor tissue cells, and bacteria. Furthermore, secretory membranes mainly refer to exosome, apoptotic body and bacterial outer membrane vesicle, and membranes with specific protein/peptide expression or therapeutic inclusions are obtained from engineered cells. Finally, a hybrid membrane will be constituted by two or more of the abovementioned membranes. These membranes can form drug-carrying nanoparticles themselves or coat multi-functional nanoparticles, further realizing efficient cancer therapy. We summarize the application of various biological membrane-based nanomaterials in cancer therapy and point out their advantages as well as the places that need to be further improved, providing systematic knowledge of this field and a strategy for further optimization.
Collapse
Affiliation(s)
- Mengling Shen
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaojie Wu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Minqian Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
20
|
Chowdhury P, Bhusetty Nagesh PK, Hollingsworth TJ, Jaggi M, Chauhan SC, Yallapu MM. Coating a Self-Assembly Nanoconstruct with a Neutrophil Cell Membrane Enables High Specificity for Triple Negative Breast Cancer Treatment. ACS APPLIED BIO MATERIALS 2022; 5:4554-4566. [PMID: 35976626 DOI: 10.1021/acsabm.2c00614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is one of the most commonly diagnosed cancers in American women. Triple negative breast cancer is among the most advanced and aggressive forms of breast cancer. Treatment options are limited for such cancers, making chemotherapy a convenient and effective treatment. Although these therapies can reduce morbidity and mortality, it is often followed by systemic side effects or relapse. Nanoparticles (NPs) have been considered for drug delivery approaches due to their ability to target various disease sites. Herein, we aim to develop a biomimetic NP construct (cell membrane-cloaked NPs) that exhibits specific affinity with triple negative breast cancer cells. In this regard, we designed biomimetic supramolecular nanoconstructs composed of a poly(vinyl pyrrolidone)-tannic acid (PVP-TA NPs/ PVT NPs) core and biofunctionalized with neutrophil cell membranes (PVT-NEU NPs). In this study, we have synthesized a PVT-NEU NP construct, characterized it, and evaluated it for improved targeting and therapeutic benefits in in vitro and in vivo models. Analysis of PVT-NEU NPs confirms the presence of the core of PVP-TA NPs coated with activated human neutrophil membranes. The study results confirmed that PVT-NEU NPs demonstrated an enhanced interaction and targeting with the tumor cells, thus improving the therapeutic activity of a model therapeutic agent (paclitaxel). Altogether, this study suggests the potential of biomimetic NPs as a promising therapeutic option for targeted drug delivery for advanced-stage breast cancer and other similar diseased conditions.
Collapse
Affiliation(s)
- Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Prashanth Kumar Bhusetty Nagesh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - T J Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash Chand Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali Mohan Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
21
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
22
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Padmakumar A, Koyande NP, Rengan AK. The Role of Hitchhiking in Cancer Therapeutics – A review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Navami Prabhakar Koyande
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| |
Collapse
|
24
|
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15:100279. [PMID: 35601893 PMCID: PMC9119842 DOI: 10.1016/j.mtbio.2022.100279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
|
25
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
26
|
Abstract
Mesenchymal stem cells (MSCs) exhibit regenerative and reparative properties. However, most MSC-related studies remain to be translated for regular clinical usage, partly due to challenges in pre-transplantation cell labelling and post-transplantation cell tracking. Amidst this, there are growing concerns over the toxicity of commonly used gadolinium-based contrast agents that mediate in-vivo cell detection via MRI. This urges to search for equally effective but less toxic alternatives that would facilitate and enhance MSC detection post-administration and provide therapeutic benefits in-vivo. MSCs labelled with iron oxide nanoparticles (IONPs) have shown promising results in-vitro and in-vivo. Thus, it would be useful to revisit these studies before inventing new labelling approaches. Aiming to inform regenerative medicine and augment clinical applications of IONP-labelled MSCs, this review collates and critically evaluates the utility of IONPs in enhancing MSC detection and therapeutics. It explains the rationale, principle, and advantages of labelling MSCs with IONPs, and describes IONP-induced intracellular alterations and consequent cellular manifestations. By exemplifying clinical pathologies, it examines contextual in-vitro, animal, and clinical studies that used IONP-labelled bone marrow-, umbilical cord-, adipose tissue- and dental pulp-derived MSCs. It compiles and discusses studies involving MSC-labelling of IONPs in combinations with carbohydrates (Venofer, ferumoxytol, dextran, glucosamine), non-carbohydrate polymers [poly(L-lysine), poly(lactide-co-glycolide), poly(L-lactide), polydopamine], elements (ruthenium, selenium, gold, zinc), compounds/stains (silica, polyethylene glycol, fluorophore, rhodamine B, DAPI, Prussian blue), DNA, Fibroblast growth Factor-2 and the drug doxorubicin. Furthermore, IONP-labelling of MSC exosomes is reviewed. Also, limitations of IONP-labelling are addressed and methods of tackling those challenges are suggested.
Collapse
|
27
|
Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3825-3837. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.
Collapse
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Zengyan Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Guochang Lin
- School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
28
|
Shin MJ, Park JY, Lee DH, Khang D. Stem Cell Mimicking Nanoencapsulation for Targeting Arthritis. Int J Nanomedicine 2022; 16:8485-8507. [PMID: 35002240 PMCID: PMC8725870 DOI: 10.2147/ijn.s334298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a promising regenerative therapy due to their ability to migrate toward damaged tissues. The homing ability of MSCs is unique compared with that of non-migrating cells and MSCs are considered promising therapeutic vectors for targeting major cells in many pathophysiological sites. MSCs have many advantages in the treatment of malignant diseases, particularly rheumatoid arthritis (RA). RA is a representative autoimmune disease that primarily affects joints, and secreted chemokines in the joints are well recognized by MSCs following their migration to the joints. Furthermore, MSCs can regulate the inflammatory process and repair damaged cells in the joints. However, the functionality and migration ability of MSCs injected in vivo still show insufficient. The targeting ability and migration efficiency of MSCs can be enhanced by genetic engineering or modification, eg, overexpressing chemokine receptors or migration-related genes, thus maximizing their therapeutic effect. However, there are concerns about genetic changes due to the increased probability of oncogenesis resulting from genome integration of the viral vector, and thus, clinical application is limited. Furthermore, it is suspected that administering MSCs can promote tumor growth and metastasis in xenograft and orthotopic models. For this reason, MSC mimicking nanoencapsulations are an alternative strategy that does not involve using MSCs or bioengineered MSCs. MSC mimicking nanoencapsulations consist of MSC membrane-coated nanoparticles, MSC-derived exosomes and artificial ectosomes, and MSC membrane-fused liposomes with natural or genetically engineered MSC membranes. MSC mimicking nanoencapsulations not only retain the targeting ability of MSCs but also have many advantages in terms of targeted drug delivery. Specifically, MSC mimicking nanoencapsulations are capable of encapsulating drugs with various components, including chemotherapeutic agents, nucleic acids, and proteins. Furthermore, there are fewer concerns over safety issues on MSC mimicking nanoencapsulations associated with mutagenesis even when using genetically engineered MSCs, because MSC mimicking nanoencapsulations use only the membrane fraction of MSCs. Genetic engineering is a promising route in clinical settings, where nano-encapsulated technology strategies are combined. In this review, the mechanism underlying MSC homing and the advantages of MSC mimicking nanoencapsulations are discussed. In addition, genetic engineering of MSCs and MSC mimicking nanoencapsulation is described as a promising strategy for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Min Jun Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21999, South Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
29
|
Pan Y, Li J, Xia X, Wang J, Jiang Q, Yang J, Dou H, Liang H, Li K, Hou Y. β-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Am J Cancer Res 2022; 12:675-688. [PMID: 34976207 PMCID: PMC8692910 DOI: 10.7150/thno.64874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Innate immune memory, also termed “trained immunity”, is thought to protect against experimental models of infection, including sepsis. Trained immunity via reprogramming monocytes/macrophages has been reported to result in enhanced inflammatory status and antimicrobial activity against infection in sepsis. However, a safe and efficient way to induce trained immunity remains unclear. Methods: β-glucan is a prototypical agonist for inducing trained immunity. Ferumoxytol, superparamagnetic iron oxide (SPIO) with low cytotoxicity, has been approved by FDA for clinical use. We synthesized novel nanoparticles BSNPs by coupling β-glucan with SPIO. BSNPs were further conjugated with fluorescein for quantitative analysis and trace detection of β-glucan on BSNPs. Inflammatory cytokine levels were measured by ELISA and qRT-PCR, and the phagocytosis of macrophages was detected by flow cytometry and confocal microscopy. The therapeutic effect of BSNPs was evaluated on the well-established sepsis mouse model induced by both clinical Escherichia coli (E. coli) and cecal ligation and puncture (CLP). Results: BSNPs were synthesized successfully with a 3:20 mass ratio of β-glucan and SPIO on BSNPs, which were mainly internalized by macrophages and accumulated in the lungs and livers of mice. BSNPs effectively reprogrammed macrophages to enhance the production of trained immunity markers and phagocytosis toward bacteria. BSNP-induced trained immunity protected mice against sepsis caused by E. coli and CLP and also against secondary infection. We found that BSNP treatment elevated Akt, S6, and 4EBP phosphorylation, while mTOR inhibitors decreased the trained immunity markers and phagocytosis enhanced by BSNPs. Furthermore, the PCR Array analysis revealed Igf1, Sesn1, Vegfa, and Rps6ka5 as possible key regulators of mTOR signaling during trained immunity. BSNP-induced trained immunity mainly regulated cellular signal transduction, protein modification, and cell cycle by modulating ATP binding and the kinase activity. Our results indicated that BSNPs induced trained immunity in an mTOR-dependent manner. Conclusion: Our data highlight that the trained immunity of macrophages is an effective strategy against sepsis and suggest that BSNPs are a powerful tool for inducing trained immunity to prevent and treat sepsis and secondary infections.
Collapse
|
30
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
31
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
32
|
Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv 2021; 28:1237-1255. [PMID: 34142930 PMCID: PMC8216268 DOI: 10.1080/10717544.2021.1938757] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology provides synthetic carriers for cancer drug delivery that protect cargos from degradation, control drug release and increase local accumulation at tumors. However, these non-natural vehicles display poor tumor targeting and potential toxicity and are eliminated by the immune system. Recently, biomimetic nanocarriers have been widely developed based on the concept of ‘mimicking nature.’ Among them, cell-derived biomimetic vehicles have become the focus of bionics research because of their multiple natural functions, such as low immunogenicity, long circulation time and targeting ability. Cell membrane-coated carriers and extracellular vesicles are two widely used cell-based biomimetic materials. Here, this review summarizes the latest progress in the application of these two biomimetic carriers in targeted cancer therapy. Their properties and performance are compared, and their future challenges and development prospects are discussed.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Li
- Department of Pharmacy, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liangdi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
34
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
35
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
36
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Zhang M, Zhang F, Liu T, Shao P, Duan L, Yan J, Mu X, Jiang J. Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors. Int J Nanomedicine 2020; 15:10183-10197. [PMID: 33363374 PMCID: PMC7754090 DOI: 10.2147/ijn.s282931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Nanoparticle (NP)-based chemo-photothermal therapy (CPT) has been shown to be a promising non-invasive approach for antitumor treatment. However, NPs must overcome the limitations of opsonization, clearance of the reticuloendothelial system, and ineffective targeting of tumor tissue sites. To solve these problems, stem cell membrane (SCM)-camouflaged polydopamine nanoparticles (PDA@SCM NPs) carrying the hydrophobic anticancer drug 7-ethyl-10-hydroxycamptothecin (SN38) were constructed for CPT of malignant bone tumors. Methods We developed umbilical-cord mesenchymal stem cell membrane-coated polydopamine nanoparticles encapsulating SN38 (PDA-SN38@SCM NPs) as an efficient tumor-targeting drug-delivery platform for CPT of malignant bone tumors. We characterized PDA@SCM NPs and evaluated the biocompatibility and anti-phagocytosis properties of PDA@SCM NPs. The antitumor activity of PDA-SN38@SCM NPs was evaluated in MG63 lines and an MG63 xenograft model in mice. Results Synthesized PDA-SN38@SCM NPs retained an excellent photothermal effect after SN38 loading. The drug release of PDA-SN38@SCM NPs could be triggered by near-infrared irradiation and an acidic stimulus. PDA@SCM NPs exhibited lower nonspecific macrophage uptake, longer retention in blood, and more effective accumulation at tumor sites than that shown by PDA NPs. Confocal laser scanning microscopy (CLSM) and flow cytometry showed that MG63 cells took up more PDA-SN38@SCM NPs than PDA-SN38 NPs. In vitro and in vivo antitumor studies demonstrated the outstanding performance of PDA-SN38@SCM NPs in synergistic CPT for bone tumors. Conclusion PDA-SN38@SCM NPs demonstrated an extraordinary synergistic CPT effect and could be a promising strategy for the treatment of malignant bone tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Fuqiang Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Lian Duan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jun Yan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
38
|
Sun L, Xu Y, Zhang X, Gao Y, Chen J, Zhou A, Lu Q, Wang Z, Shao K, Wu H, Ning X. Mesenchymal Stem Cells Functionalized Sonodynamic Treatment for Improving Therapeutic Efficacy and Compliance of Orthotopic Oral Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005295. [PMID: 33118267 DOI: 10.1002/adma.202005295] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Despite multiple treatment options being available, many critical challenges are still ongoing in the treatment of oral squamous cell carcinoma (OSCC). Particularly, the major hurdle is to avoid facial disfigurement and oral function disability during treatment. Herein, nanoengineered mesenchymal stem cells (MSCs) are developed as a supersonosensitizer, named M/LPV/O2 , for improving nondestructive sonodynamic therapy (SDT) against OSCC along with good therapeutic compliance. M/LPV/O2 is composed of an MSCs membrane functionalized liposomal formulation of oxygen-loading perfluorocarbon and sonosensitizer verteporfin (M/LPV/O2 ), which can not only increase circulation and targeting efficacy but also supply oxygen to overcome tumor-hypoxia-associated resistance in SDT, resulting in enhanced therapeutic outcomes in vitro and in vivo. It is identified that M/LPV/O2 effectively stimulates the generation of reactive oxygen species even in hypoxic conditions, and consequently tremendously induces cancer cell death. In addition, M/LPV/O2 displays good tumor accumulation and penetration under ultrasound stimulation, and efficiently induces tumor inhibition and even abrogation, leading to prolonged survival of tumor-bearing mice. Importantly, M/LPV/O2 -based SDT exhibits minimal systemic adverse effects and successfully maintains oral functions with no facial tissue damage. Therefore, these studies provide a promising therapeutic strategy for OSCC, which has a potential to enhance life quality and compliance after treatment.
Collapse
Affiliation(s)
- Lei Sun
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xiaomin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Qiangbing Lu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Zeyu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Kaifeng Shao
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
39
|
Jiménez-Jiménez C, Manzano M, Vallet-Regí M. Nanoparticles Coated with Cell Membranes for Biomedical Applications. BIOLOGY 2020; 9:biology9110406. [PMID: 33218092 PMCID: PMC7698879 DOI: 10.3390/biology9110406] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Nanomedicine has developed a new technology based on nanoparticles for drug delivery coated with different cell membranes. Although they were originally developed to increase their blood circulation time and stability though the use of red blood cell membranes, the versatility of this technology has extended to membranes from different cell types, such as white blood cells, platelets, cancer cells, mesenchymal stem cells, and beta cells, among others. Therefore, this cellular diversity and its unique properties, together with the possibility of using a wide range of nanoparticles and different drug dosage forms, has opened a new area for the manufacture of nanoparticles, with many potential applications in the clinic. Abstract Nanoparticles designed for diagnosing and treating different diseases have impacted the scientific research in biomedicine, and are expected to revolutionize the clinic in the near future through a new area called nanomedicine. In the last few years, a new approach in this field has emerged: the use of cell membranes for coating nanoparticles in an attempt to mimic the ability of cells to interface and interact with physiological environments. Although such functions have been replicated through synthetic techniques, many research groups are now employing naturally derived cell membranes to coat different types of nanoparticles in an attempt to improve their performance for a wide range of applications. This review summarizes the literature on nanoparticles coated with cell membranes and, more importantly, aims at inspiring and encouraging new developments to this technology in the biomedical area.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| |
Collapse
|
40
|
Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo Targeting of Liver Cancer with Tissue- and Nuclei-Specific Mesoporous Silica Nanoparticle-Based Nanocarriers in mice. Int J Nanomedicine 2020; 15:8383-8400. [PMID: 33149582 PMCID: PMC7605659 DOI: 10.2147/ijn.s272495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Cancer tissue-specific and nuclei-targeted drug delivery is ideal for the delivery of chemotherapy. However, it has only been achieved in in vitro studies mainly due to low efficiency in vivo. In this study, we aimed to establish an efficient dual-targeted system that targets liver cancer tissue as well as the nuclei of cancer cells in vivo. Methods We first synthesized TAT peptide (TATp)-mesoporous silica nanoparticle (MSN) complex (TATp-MSN) and generated liposomes that carried liver cancer-specific aptamer TLS11a (TLS11a-LB). We then generated the drug TLS11a-LB@TATp-MSN/doxorubicin (DOX) by mixing TLS11a-LB and DOX-loaded TATp-MSN. After physical and chemical characterization of the nanoparticles, DOX release from these formulations was evaluated at pH 5.0 and 7.4. Furthermore, we also evaluated nuclear localization and cytotoxicity of the drug in H22 cells in vitro and investigated the liver cancer targeting and antitumor activities of the nano-drug in vivo using a H22 tumor-bearing mice model. Results TLS11a-LB@TATp-MSN/DOX and its controls were confirmed as nano-drugs (<100 nm) using transmission electron microscopy (TEM). The DOX release rate of TLS11a-LB@TATp-MSN/DOX was significantly faster at pH 5.0 than at pH 7.4. TLS11a-LB@TATp-MSN/DOX effectively targeted the nuclei of H22 cells and released DOX with a higher efficiency than that of the control groups. In addition, TLS11a-LB@TATp-MSN/DOX exhibited slight cytotoxicity, but not significantly more than controls. In vivo studies showed that TLS11a-LB@TATp-MSN accumulated in subcutaneous H22 tumors in the right axilla of BALB/c mice, reaching peak levels at 48 h after intravenous injection, respectively, and demonstrated that TLS11a-LB@TATp-MSN/DOX group enhanced tumor treatment efficacy while reducing systemic side effects. Conclusion TLS11a-LB@TATp-MSN/DOX can efficiently deliver DOX to the nuclei of liver cancer cells by dual targeting liver cancer tissue and the nuclei of the cancer cells in mice. Thus, it is a promising nano-drug for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ziqiang Ding
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Dujin Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Wei Shi
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Siliang Duan
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Fengzhen Mo
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoqiong Hou
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Aiqun Liu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,College of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|