1
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Frontiers in Preparations and Promising Applications of Mesoporous Polydopamine for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 15:pharmaceutics15010015. [PMID: 36678644 PMCID: PMC9861962 DOI: 10.3390/pharmaceutics15010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Polydopamine (PDA) is a natural melanin derived from marine mussels that has good biocompatibility, biodegradability, and photothermal conversion ability. As a new coating material, it offers a novel way to modify the surface of various substances. The drug loading capacity and encapsulation efficiency of PDA are greatly improved via the use of mesoporous materials. The abundant pore canals on mesoporous polydopamine (MPDA) exhibit a uniquely large surface area, which provides a structural basis for drug delivery. In this review, we systematically summarized the characteristics and manufacturing process of MPDA, introduced its application in the diagnosis and treatment of cancer, and discussed the existing problems in its development and clinical application. This comprehensive review will facilitate further research on MPDA in the fields of medicine including cancer therapy, materials science, and biology.
Collapse
|
3
|
Bruckmann FDS, Nunes FB, Salles TDR, Franco C, Cadoná FC, Bohn Rhoden CR. Biological Applications of Silica-Based Nanoparticles. MAGNETOCHEMISTRY 2022; 8:131. [DOI: 10.3390/magnetochemistry8100131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Silica nanoparticles have been widely explored in biomedical applications, mainly related to drug delivery and cancer treatment. These nanoparticles have excellent properties, high biocompatibility, chemical and thermal stability, and ease of functionalization. Moreover, silica is used to coat magnetic nanoparticles protecting against acid leaching and aggregation as well as increasing cytocompatibility. This review reports the recent advances of silica-based magnetic nanoparticles focusing on drug delivery, drug target systems, and their use in magnetohyperthermia and magnetic resonance imaging. Notwithstanding, the application in other biomedical fields is also reported and discussed. Finally, this work provides an overview of the challenges and perspectives related to the use of silica-based magnetic nanoparticles in the biomedical field.
Collapse
|
4
|
Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Huang T, Peng L, Han Y, Wang D, He X, Wang J, Ou C. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol 2022; 13:922301. [PMID: 36090974 PMCID: PMC9458914 DOI: 10.3389/fimmu.2022.922301] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) vaccines constitute an emerging therapeutic method with the advantages of high safety and efficiency as well as easy synthesis; thus, they have been widely used in various human diseases, especially in malignant cancers. However, the mRNA vaccine technology has some limitations, such as instability and low transitive efficiency in vivo, which greatly restrict its application. The development of nanotechnology in the biomedical field offers new strategies and prospects for the early diagnosis and treatment of human cancers. Recent studies have demonstrated that Lipid nanoparticle (LNP)-based mRNA vaccines can address the poor preservation and targeted inaccuracy of mRNA vaccines. As an emerging cancer therapy, mRNA vaccines potentially have broad future applications. Unlike other treatments, cancer mRNA vaccines provide specific, safe, and tolerable treatments. Preclinical studies have used personalized vaccines to demonstrate the anti-tumor effect of mRNA vaccines in the treatment of various solid tumors, including colorectal and lung cancer, using these in a new era of therapeutic cancer vaccines. In this review, we have summarized the latest applications and progress of LNP-based mRNA vaccines in cancers, and discussed the prospects and limitations of these fields, thereby providing novel strategies for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| |
Collapse
|
6
|
Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022; 17:1253-1279. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted drug-delivery systems are a growing research topic in tumor treatment. In recent years, mesoporous silica nanoparticles (MSNs) have been extensively studied and applied in noninvasive and biocompatible drug-delivery systems for tumor therapy due to their outstanding advantages, which include high surface area, large pore volume, tunable pore size, easy surface modification and stable framework. The advances in the application of MSNs for anticancer drug targeting are covered and highlighted in this review, and the challenges and prospects of MSN-based targeted drug-delivery systems are discussed. This review provides new insights for researchers interested in targeted drug-delivery systems against cancer.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guoxing Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Pharmacy, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianlong Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
7
|
Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int J Nanomedicine 2022; 17:1803-1827. [PMID: 35498391 PMCID: PMC9043011 DOI: 10.2147/ijn.s353349] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The application of mesoporous silica nanoparticles (MSNs) is ubiquitous in various sciences. MSNs possess unique features, including the diversity in manufacturing by different synthesis methods and from different sources, structure controllability, pore design capabilities, pore size tunability, nanoparticle size distribution adjustment, and the ability to create diverse functional groups on their surface. These characteristics have led to various types of MSNs as a unique system for drug delivery. In this review, first, the synthesis of MSNs by different methods via using different sources were studied. Then, the parameters affecting their physicochemical properties and functionalization have been discussed. Finally, the last decade's novel strategies, including surface functionalization, drug delivery, and cancer treatment, based on the MSNs in drug delivery and cancer therapy have been addressed.
Collapse
Affiliation(s)
- Sahar Porrang
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Rahemi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Somaiyeh Allahyari
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Tran VA, Vo GV, Tan MA, Park JS, An SSA, Lee SW. Dual Stimuli-Responsive Multifunctional Silicon Nanocarriers for Specifically Targeting Mitochondria in Human Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040858. [PMID: 35456692 PMCID: PMC9028052 DOI: 10.3390/pharmaceutics14040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/16/2023] Open
Abstract
Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO (FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in the mitochondria of cancer cells and destroying them.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam;
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Joon-Seo Park
- Department of Chemistry, Eastern University, 1300 Eagle Road, St. Davids, PA 19087, USA;
| | - Seong Soo A. An
- Department of Bionano Technology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: (S.S.A.A.); (S.-W.L.); Tel.: +82-31-750-8755 (S.S.A.A.); +82-31-750-5360 (S.-W.L.)
| |
Collapse
|
9
|
Le VT, Vasseghian Y, Doan VD, Nguyen TTT, Thi Vo TT, Do HH, Vu KB, Vu QH, Dai Lam T, Tran VA. Flexible and high-sensitivity sensor based on Ti 3C 2-MoS 2 MXene composite for the detection of toxic gases. CHEMOSPHERE 2022; 291:133025. [PMID: 34848226 DOI: 10.1016/j.chemosphere.2021.133025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 05/27/2023]
Abstract
It is vital to have high sensitivity in gas sensors to allow the exact detection of dangerous gases in the air and at room temperature. In this study, we used 2D MXenes and MoS2 materials to create a Ti3C2-MoS2 composite with high metallic conductivity and a wholly functionalized surface for a significant signal. At room temperature, the Ti3C2-MoS2 composite demonstrated clear signals, cyclic response curves to NO2 gas, and gas concentration-dependent. The sensitivities of the standard Ti3C2-MoS2 (TM_2) composite (20 wt% MoS2) rose dramatically to 35.8%, 63.4%, and 72.5% when increasing NO2 concentrations to 10 ppm, 50 ppm, and 100 ppm, respectively. In addition, the composite showed reaction signals to additional hazardous gases, such as ammonia and methane. Our findings suggest that highly functionalized metallic sensing channels could be used to construct multigas-detecting sensors that are very sensitive in air and at room temperature.
Collapse
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Natural Science, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Thu Trang Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Thu-Thao Thi Vo
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Khanh B Vu
- Department of Chemical Engineering, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Quang Hieu Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Viet Nam.
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam.
| | - Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
10
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
11
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
13
|
Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. J CHEM-NY 2021. [DOI: 10.1155/2021/9985604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mangosteen peels contain biologically active compounds, with antioxidant and anticancer properties. Among these isolated phytochemicals, α-mangostin is one of the most powerful natural antioxidants and anticancer compounds. This study focused on synthesizing novel α-mangostin (α-MG) derivatives at positions of C-3 and C-6 from extracted α-MG of mangosteen peels and investigating antioxidant and anticancer activities. The structures of the synthesized compounds were determined by using MS, 1H-NMR, 13C-NMR, and HPLC. The analysis of the interaction between structure and bioactivity showed that phenol groups on C-3 and C-6 positions play a crucial role in antiproliferative activity to boost both anticancer efficacy and drug-like properties. The antioxidant activity of α-MG and its derivatives were investigated by the DPPH method. Among α-MG derivatives, 1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9-oxo-9H-xanthene-3,6-diyl bis(2-bromobenzoate) (compound 4) exhibited significant antioxidant property. The in vitro cytotoxicity against various cancer cell lines (HeLa, MCF-7, NCI–H460, and HepG2) was evaluated by the standard sulforhodamine B assay. The anticancer activities (HeLa, MCF-7, NCI–H460, and HepG2) of compound 4 are five to six times higher than those of α-MG and other derivatives. The acetylation at C-3 and C-6 of α-MG by halogen of benzoyl greatly improved cancer cell toxicity. Our results provide new opportunities for further explorations of α-MG derivatives for antioxidant property and promise as drugs in cancer therapy.
Collapse
|
14
|
Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing. Int J Mol Sci 2021; 22:11300. [PMID: 34681959 PMCID: PMC8540563 DOI: 10.3390/ijms222011300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
The innovative research in genome editing domains such as CRISPR-Cas technology has enabled genetic engineers to manipulate the genomes of living organisms effectively in order to develop the next generation of therapeutic tools. This technique has started the new era of "genome surgery". Despite these advances, the barriers of CRISPR-Cas9 techniques in clinical applications include efficient delivery of CRISPR/Cas9 and risk of off-target effects. Various types of viral and non-viral vectors are designed to deliver the CRISPR/Cas9 machinery into the desired cell. These methods still suffer difficulties such as immune response, lack of specificity, and efficiency. The extracellular and intracellular environments of cells and tissues differ in pH, redox species, enzyme activity, and light sensitivity. Recently, smart nanoparticles have been synthesized for CRISPR/Cas9 delivery to cells based on endogenous (pH, enzyme, redox specie, ATP) and exogenous (magnetic, ultrasound, temperature, light) stimulus signals. These methodologies can leverage genome editing through biological signals found within disease cells with less off-target effects. Here, we review the recent advances in stimulus-based smart nanoparticles to deliver the CRISPR/Cas9 machinery into the desired cell. This review article will provide extensive information to cautiously utilize smart nanoparticles for basic biomedical applications and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Mubasher Zahir Hoque
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijing 100190, China;
| | - Chanbasha Basheer
- Chemistry Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Hieu VQ, Phung TK, Nguyen TQ, Khan A, Doan VD, Tran VA, Le VT. Photocatalytic degradation of methyl orange dye by Ti 3C 2-TiO 2 heterojunction under solar light. CHEMOSPHERE 2021; 276:130154. [PMID: 33714879 DOI: 10.1016/j.chemosphere.2021.130154] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic activity is a feasible solution to tackle environmental pollution caused by industrial pollutants. In this research, Ti3C2-TiO2 composite with a unique structure was fabricated successfully via a hydrothermal method. Especially, the in-situ transformation of TiO2 from Ti3C2 MXene creates an intimate heterostructure, which leads to prolonging separation and migration of charged carriers. Thus, this Ti3C2-TiO2 composite enhances effectively methyl orange (MO) degradation efficiency (around 99%) after 40 light-exposed minutes. Besides, the optimal concentration of MO solution was estimated at 40 mg/L and Ti3C2-TiO2 photocatalyst also exhibited good stability after five runs. Moreover, the radical trapping test and the MO photodegradation mechanism over Ti3C2-TiO2 system were also demonstrated. This research illustrates the potential of MXenes as effective co-catalysts for photocatalysis and extends the applications of two-dimensional materials.
Collapse
Affiliation(s)
- Vu Quang Hieu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Viet Nam.
| | - Thanh Khoa Phung
- Department of Chemical Engineering, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | | | - Afrasyab Khan
- Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation.
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam.
| | - Vy Anh Tran
- Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam.
| | - Van Thuan Le
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam; Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam.
| |
Collapse
|
17
|
Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 2021; 129:1-17. [PMID: 34010692 DOI: 10.1016/j.actbio.2021.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Mesoporous silica-based materials, especially mesoporous bioactive glasses (MBGs), are being highly considered for biomedical applications, including drug delivery and tissue engineering, not only because of their bioactivity and biocompatibility but also due to their tunable composition and potential use as drug delivery carriers owing to their controllable nanoporous structure. Numerous researches have reported that MBGs can be doped with various therapeutic ions (strontium, copper, magnesium, zinc, lithium, silver, etc.) and loaded with specific biomolecules (e.g., therapeutic drugs, antibiotics, growth factors) achieving controllable loading and release kinetics. Therefore, co-delivery of ions and biomolecules using a single MBG carrier is highly interesting as this approach provides synergistic effects toward improved therapeutic outcomes in comparison to the strategy of sole drug or ion delivery. In this review, we discuss the state-of-the-art in the field of mesoporous silica-based materials used for co-delivery of ions and therapeutic drugs with osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties. The analysis of the literature reveals that specially designed mesoporous nanocarriers can release multiple ions and drugs at therapeutically safe and relevant levels, achieving the desired biological effects (in vivo, in vitro) for specific biomedical applications. It is expected that this review on the ion/drug co-delivery concept using MBG carriers will shed light on the advantages of such co-delivery systems for clinical use. Areas for future research directions are identified and discussed. STATEMENT OF SIGNIFICANCE: Many studies in literature focus on the potential of single drug or ion delivery by mesoporous silica-based materials, exploiting the bioactivity, biocompatibility, tunable composition and controllable nanoporosity of these materials. Recenlty, studies have adopted the "dual-delivery" concept, by designing multi-functional mesoporous silica-based systems which are capable to deliver both biologically active ions and biomolecules (growth factors, drugs) simultaneously in order to achieve synergy of their complementary therapeutic activities. This review summarizes the state of the art in the field, with focus on osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties, and discusses the challenges and prospects for further progress in this area, expecting to generate broader interest in the technology for applications in disease treatment and regenerative medicine.
Collapse
|
18
|
Vallet-Regi M, Salinas A. Mesoporous bioactive glasses for regenerative medicine. Mater Today Bio 2021; 11:100121. [PMID: 34377972 PMCID: PMC8327654 DOI: 10.1016/j.mtbio.2021.100121] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cells are the central element of regenerative medicine (RM). However, in many clinical applications, the use of scaffolds fabricated with biomaterials is required. In this sense, mesoporous bioactive glasses (MBGs) are going to play an important role in bone regeneration because of their striking textural properties, quick bioactive response, and biocompatibility. As other bioactive glasses, MBGs are mainly formed by silicon, calcium, and phosphorus oxides whose ions play an important role in cell proliferation as well as in homeostasis and bone remodeling process. A common improvement of bioactive glasses for RM is by adding small amounts of oxides of elements that confer them additional biological capacities, including osteogenic, angiogenic, antibacterial, anti-inflammatory, hemostatic, or anticancer properties. Moreover, MBGs are versatile in terms of the different ways in which they can be processed, such as scaffolds, fibers, coatings, or nanoparticles. MBGs are unique because their textural properties are so high that they still exhibit outstanding bioactive responses even after adding extra inorganic ions or being processed as scaffolds or nanoparticles. Moreover, they can be further improved by loading with biomolecules, drugs, and stem cells. This article reviews the state of the art and future perspectives of MBGs in the field of RM of hard tissues.
Collapse
Affiliation(s)
- M. Vallet-Regi
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - A.J. Salinas
- Department Chemistry in Pharmaceutical Sciences, Universidad Complutense (UCM) Madrid, Spain
- IIS, Hospital 12 de Octubre (imas12), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
19
|
Kvízová J, Pavlíčková V, Kmoníčková E, Ruml T, Rimpelová S. Quo Vadis Advanced Prostate Cancer Therapy? Novel Treatment Perspectives and Possible Future Directions. Molecules 2021; 26:2228. [PMID: 33921501 PMCID: PMC8069564 DOI: 10.3390/molecules26082228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer is a very common disease, which is, unfortunately, often the cause of many male deaths. This is underlined by the fact that the early stages of prostate cancer are often asymptomatic. Therefore, the disease is usually detected and diagnosed at late advanced or even metastasized stages, which are already difficult to treat. Hence, it is important to pursue research and development not only in terms of novel diagnostic methods but also of therapeutic ones, as well as to increase the effectiveness of the treatment by combinational medicinal approach. Therefore, in this review article, we focus on recent approaches and novel potential tools for the treatment of advanced prostate cancer; these include not only androgen deprivation therapy, antiandrogen therapy, photodynamic therapy, photothermal therapy, immunotherapy, multimodal therapy, but also poly(ADP-ribose) polymerase, Akt and cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
- Jana Kvízová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
- Bioinova, s.r.o., Vídeňská 1083, 140 20 Praha, Czech Republic
| | - Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| | - Eva Kmoníčková
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| |
Collapse
|
20
|
Doan VD, Nguyen NV, Nguyen TLH, Tran VA, Le VT. High-efficient reduction of methylene blue and 4-nitrophenol by silver nanoparticles embedded in magnetic graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-13597-z. [PMID: 33772471 DOI: 10.1007/s11356-021-13597-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, a ternary magnetically separable nanocomposite of silver nanoparticles (AgNPs) embedded in magnetic graphene oxide (Ag/Fe3O4@GO) was designed and synthesized. Beta-cyclodextrin was used as a green reducing and capping agent for decorating of AgNPs on Fe3O4@GO. The fabricated material was characterized using X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectroscopy. The catalytic properties of the prepared Ag/Fe3O4@GO for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB) dye with sodium borohydride were investigated in detail. The morphological and structural studies revealed that Fe3O4 and AgNPs with a mean size of 12 nm were uniformly distributed on the GO sheet at high densities. The catalytic tests showed that Ag/Fe3O4@GO exhibited an ultrafast catalytic reduction of 4-NP and MB with a reduction rate constant of 0.304 min-1 and 0.448 min-1, respectively. Moreover, the catalyst demonstrated excellent stability and reusability, as evidenced by the more than 97% removal efficiency maintained after five reuse cycles. The Ag/Fe3O4@GO catalyst could be easily recovered by the magnetic separation due to the superparamagnetic nature of Fe3O4 with high saturated magnetization (45.7 emu/g). Besides, the formation of networking between the formed AgNPs and β-CD through hydrogen bonding prevented the agglomeration of AgNPs, ensuring their high catalytic ability. The leaching study showed that the dissolution of Fe and Ag from Ag/Fe3O4@GO was negligible, indicating the environmental friendliness of the synthesized catalyst. Finally, the high catalytic performance, excellent stability, and recoverability of Ag/Fe3O4@GO make it a potential candidate for the reduction of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Vietnam
| | - Ngoc-Vy Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 700000, Vietnam
| | - Thi Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh, 700000, Vietnam
| | - Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, Republic of Korea.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
21
|
Nguyen VH, Thi Vo TT, Huu Do H, Thuan Le V, Nguyen TD, Ky Vo T, Nguyen BS, Nguyen TT, Phung TK, Tran VA. Ag@ZnO porous nanoparticle wrapped by rGO for the effective CO2 electrochemical reduction. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Tran VA, Lee SW. pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv 2021; 11:9222-9234. [PMID: 35423461 PMCID: PMC8695245 DOI: 10.1039/d0ra10423j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
Zeolite imidazolate framework-8 (ZIF8) represents a class of highly porous materials with a very high surface area, large pore volume, thermal stability, and biocompatibility. In this study, ZIF8-based nanostructures demonstrated a high loading capacity for doxorubicin (62 mg Dox per g ZIF8) through the combination of π-π stacking, hydrogen bonding, and electrostatic interactions. Dox-loaded ZIF8 was subsequently decorated with polyacrylic acid (PAA) (ZIF8-Dox@PAA) that showed good dispersity, fluorescent imaging capability, and pH-responsive drug release. The stable localization and association of Dox in ZIF8@PAA were investigated by C13 nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. The NMR chemical shifts suggest the formation of hydrogen bonding interactions and π-π stacking interactions between the imidazole ring of ZIF8 and the benzene ring of Dox that can significantly improve the storage of Dox in the ZIF8 nanostructure. Additionally, the release mechanism of ZIF8-Dox@PAA was discussed based on the detachment of the PAA layer, enhanced solubility of Dox, and destruction of ZIF8 at different pH conditions. In vitro release test of ZIF8-Dox@PAA at pH 7.4 showed the low release rate of 24.7% even after 100 h. However, ZIF8-Dox@PAA at pH 4.0 exhibited four stages of release profiles, significantly enhanced release rate of 84.7% at the final release stage after 30 h. The release kinetics of ZIF8-Dox@PAA was analyzed by the sigmoidal Hill, exponential Weibull, and two-stage BiDoseResp models. The ZIF8-Dox@PAA nanocarrier demonstrated a promising theranostic nanoplatform equipped with fluorescent bioimaging, pH-responsive controlled drug release, and high drug loading capacity.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
| |
Collapse
|
23
|
Yu Y, Wang Z, Wang R, Jin J, Zhu YZ. Short-Term Oral Administration of Mesoporous Silica Nanoparticles Potentially Induced Colon Inflammation in Rats Through Alteration of Gut Microbiota. Int J Nanomedicine 2021; 16:881-893. [PMID: 33574668 PMCID: PMC7872941 DOI: 10.2147/ijn.s295575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Mesoporous silica (MSNs) have attracted considerable attention for its application in the field of drug delivery and biomedicine due to its high surface area, large pore volume, and low toxicity. Recently, numerous studies revealed that gut microbiota is of critical relevance to host health. However, the toxicological studies of MSNs were mainly based on the degradation, biodistribution, and excretion in mammalian after oral administration for now. Here in this study, we explored the impacts of oral administration of three kinds of MSNs on gut microbiota in rats to assess its potential toxicity. METHODS Forty rats were divided into four groups: control group; Mobil Composition of Matter No. 41 type mesoporous silica (MCM-41) group; Santa Barbara Amorphous-15 type mesoporous silica (SBA-15) group, and biodegradable dendritic center-radial mesoporous silica nanoparticle (DMSN) group. Fecal samples were collected 3 days and 7 days after the intake of MSNs and analyzed with high throughput sequencing. Gastric tissues in rats were obtained after dissection for the histological study. RESULTS Three different MSNs (MCM-41, SBA-15, and DMSN) were successfully prepared in this study. The pore size of three MSNs was calculated similarly as (3.54 ± 0.15) nm, (3.48 ± 0.21) nm, and (3.45 ± 0.17) nm according to the BET & BJH model, respectively, while the particle size of MCM-41, SBA-15 and DMSN was around 209.2 nm, 1349.56 nm, and 244.4 nm, respectively. In the gene analysis of 16S rRNA, no significant changes in the diversity and richness were found between groups, while Verrucomicrobia decreased and Candidatus Saccharibacteria increased in MCM-41 treated groups. Meanwhile, no inflammatory and erosion symptoms were observed in the morphological analysis of the colons, except the MCM-41 treated group. CONCLUSION Three different MSNs, MCM-41, SBA-15, and DMSN were successfully prepared, and this study firstly suggested the impact of MSNs on the gut microbiota, and further revealing the potential pro-inflammatory effects of oral administration of MCM-41 was possibly through the changing of gut microbiota.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
| | - Jing Jin
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People’s Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Mohamed Isa ED, Ahmad H, Abdul Rahman MB, Gill MR. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics 2021; 13:152. [PMID: 33498885 PMCID: PMC7911720 DOI: 10.3390/pharmaceutics13020152] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43000, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | | | - Martin R. Gill
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|