1
|
Noor H, Ayub A, Dilshad E, Afsar T, Razak S, Husain FM, Trembley JH. Assessment of Bryophyllum pinnatum mediated Ag and ZnO nanoparticles as efficient antimicrobial and cytotoxic agent. Sci Rep 2024; 14:22200. [PMID: 39333327 PMCID: PMC11436798 DOI: 10.1038/s41598-024-73092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Bryophyllum pinnatum is used to cure infections worldwide. Although the flavonoids of this plant are well known, it is still unknown how much of the plant's Ag and ZnO nanoparticles are beneficial. In the current research work, silver and zinc oxide nanoparticles were prepared using Bryophyllum pinnatum extract. The synthesized particles were characterized by UV-visible spectroscopy, SEM, EDS, XRD and FTIR. Synthesized particles were subjected to evaluation of their bactericidal and antifungal activity at various doses. Uv vis spectra at 400 nm corresponding to AgNPs confirmed their synthesis. Strong peaks in the EDS spectra of Ag and ZnO indicate the purity of the sample. The scanning electron microscopic images of ZnONPs showed a size of about 60 nm ± 3 nm, which demonstrated the presence of triangular-shaped ZnO nanoparticles. Green synthesized nanoparticles showed bactericidal activity against both Gram-positive (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Agrobacterium tumifaciens, Salmonella setubal, Enterobacter aerogenes) strains. AgNPs proved to be more effective against Gram-negative bacterial strains compared to Gram-positive owing to MIC values (10 ppm and 20 ppm respectively). Whereas, ZnONPs were found more effective against Gram-positive bacteria with lower MIC values (10 ppm) as compared to Gram-negative ones (20 ppm). Also, the synthesized nanoparticles exhibited moderate dose-dependent antifungal activity against tested fungal strains ranging from 10 to 70%. Cytotoxicity of nanoparticles was found significant using Brine shrimp's lethality assay with IC50 values of 4.09 ppm for AgNPs, 13.72 ppm for ZnONPs, and 24.83 ppm for plant extract. Conclusively, Ag and ZnO nanoparticles were more effective than plant extract and AgNPs had higher activities than those of ZnONPs. Further research is warranted to explore the precise mechanism of action and the potential applications of these nanoparticles in the medical field.
Collapse
Affiliation(s)
- Huma Noor
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan
| | - Asma Ayub
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Kumar P, Mangla B, Javed S, Ahsan W, Musyuni P, Sivadasan D, Alqahtani SS, Aggarwal G. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy. Front Pharmacol 2023; 14:1149554. [PMID: 37274111 PMCID: PMC10237355 DOI: 10.3389/fphar.2023.1149554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Breast cancer being one of the most frequent cancers in women accounts for almost a quarter of all cancer cases. Early and late-stage breast cancer outcomes have improved dramatically, with considerable gains in overall survival rate and disease-free state. However, the current therapy of breast cancer suffers from drug resistance leading to relapse and recurrence of the disease. Also, the currently used synthetic and natural agents have bioavailability issues which limit their use. Recently, nanocarriers-assisted delivery of synthetic and natural anticancer drugs has been introduced to the breast cancer therapy which alienates the limitations associated with the current therapy to a great extent. Significant progress has lately been made in the realm of nanotechnology, which proved to be vital in the fight against drug resistance. Nanotechnology has been successfully applied in the effective and improved therapy of different forms of breast cancer including invasive, non-invasive as well as triple negative breast cancer (TNBC), etc. This review presents a comprehensive overview of various nanoformulations prepared for the improved delivery of synthetic and natural anticancer drugs alone or in combination showing better efficacy and pharmacokinetics. In addition to this, various ongoing and completed clinical studies and patents granted on nanotechnology-based breast cancer drug delivery are also reviewed.
Collapse
Affiliation(s)
- Pankaj Kumar
- Centre For Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Bharti Mangla
- Centre For Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Musyuni
- Centre For Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Centre For Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
4
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
5
|
Chavda VP, Nalla LV, Balar P, Bezbaruah R, Apostolopoulos V, Singla RK, Khadela A, Vora L, Uversky VN. Advanced Phytochemical-Based Nanocarrier Systems for the Treatment of Breast Cancer. Cancers (Basel) 2023; 15:1023. [PMID: 36831369 PMCID: PMC9954440 DOI: 10.3390/cancers15041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
As the world's most prevalent cancer, breast cancer imposes a significant societal health burden and is among the leading causes of cancer death in women worldwide. Despite the notable improvements in survival in countries with early detection programs, combined with different modes of treatment to eradicate invasive disease, the current chemotherapy regimen faces significant challenges associated with chemotherapy-induced side effects and the development of drug resistance. Therefore, serious concerns regarding current chemotherapeutics are pressuring researchers to develop alternative therapeutics with better efficacy and safety. Due to their extremely biocompatible nature and efficient destruction of cancer cells via numerous mechanisms, phytochemicals have emerged as one of the attractive alternative therapies for chemotherapeutics to treat breast cancer. Additionally, phytofabricated nanocarriers, whether used alone or in conjunction with other loaded phytotherapeutics or chemotherapeutics, showed promising results in treating breast cancer. In the current review, we emphasize the anticancer activity of phytochemical-instigated nanocarriers and phytochemical-loaded nanocarriers against breast cancer both in vitro and in vivo. Since diverse mechanisms are implicated in the anticancer activity of phytochemicals, a strong emphasis is placed on the anticancer pathways underlying their action. Furthermore, we discuss the selective targeted delivery of phytofabricated nanocarriers to cancer cells and consider research gaps, recent developments, and the druggability of phytoceuticals. Combining phytochemical and chemotherapeutic agents with nanotechnology might have far-reaching impacts in the future.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu 610064, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
6
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Asam Raza M, Farwa U, Waseem Mumtaz M, Kainat J, Sabir A, Al-Sehemi AG. Green synthesis of gold and silver nanoparticles as antidiabetic and anticancerous agents. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2275666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/21/2023] [Indexed: 01/05/2025]
Affiliation(s)
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Javeria Kainat
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Areej Sabir
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
8
|
Qudsia T, Tahir M, Sibtain A, Farooq A, Abdul RR. Characterization and anticancer potential of Withania somnifera fruit bioactives (a native species to Pakistan) using gas chromatography-mass spectrometer, nuclear magnetic resonance and liquid chromatography-mass spectrometry-electrospray ionization. J TRADIT CHIN MED 2022; 42:908-918. [PMID: 36378048 PMCID: PMC9924761 DOI: 10.19852/j.cnki.jtcm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Withania somnifera (W. somnifera) is a plant with remarkable pharmacological properties. The plant has an impressive profile of medicinal uses in the folk medicine system of several civilizations. AIM This comprehensive study is aimed to characterize phytochemicals in fruit of W. somnifera and tested for anticancer potential to find out active candidate in disease prevention and treatment. METHODS The bioactive components from W. somn-ifera fruit were extracted with polar and non-polar solvents. Anticancer potential of the isolated bioactive was assessed against different cancer cell lines through MTT assay and Incucytes imaging analysis. The extracts were characterized for secondary metabolites using GC-MS (gas chromatography-mass spectrometer), LCMS (liquid chromatography-mass spectrometry)-ESI (electrospray Ionization) and 1H-NMR (electrospray Ionization) techniques. RESULTS Both freeze-dried and rotary evaporator con-densed extracts exhibited anticancer potential against MDA-MB-231, MCF7- SKOV3 and SKBR3 cell lines. The tested extracts have cell growth inhibition potential ag-ainst mammalian cancer cell line. Hexacosanedioic acid purified from -hexane extract through HPLC was inves-tigated for its cytotoxicity against breast cancer cell line SKBR3 by using Incucytes imaging analysis. CONCLUSION We found that a variety of bioactive compounds existed in this plant. One identified compound that was not investigated for cytotoxicity in previous studies was purified and its application showed cytotoxicity on breast cancer cell lines. A number of bioactive identified from fruit may have an effective potential for development into chemotherapy drugs.
Collapse
Affiliation(s)
- Tabassam Qudsia
- 1 Institute of Chemistry, University of Sargodha, Sargodha-40100-, Pakistan
| | - Mehmood Tahir
- 2 Institute of Chemistry, University of Sargodha, Sargodha-40100, Pakistan; Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences-UVAS, 54000-Lahore. Pakistan
| | - Ahmed Sibtain
- 3 University of California San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA
| | - Anwar Farooq
- 1 Institute of Chemistry, University of Sargodha, Sargodha-40100-, Pakistan
| | - Rauf Raza Abdul
- 1 Institute of Chemistry, University of Sargodha, Sargodha-40100-, Pakistan
| |
Collapse
|
9
|
Verma M, Fatima S, Ansari IA. Phytofabricated Nanoparticle Formulation for Cancer Treatment: A Comprehensive Review. Curr Drug Metab 2022; 23:818-826. [PMID: 35490313 DOI: 10.2174/1389200223666220427101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023]
Abstract
In recent times, nanotechnology has made significant advances in the field of cancer. The majority of chemotherapeutic drugs do not selectively target cancer cells, and they might cause side effects and damage to healthy cells, resulting in a variety of adverse effects. Having a thorough understanding of nanoparticles may improve drug targeting and administration. The nano-engineering of pharmacological and natural compounds can improve the diagnosis and treatment. Polymeric micelles, liposomes, and dendrimers are examples of innovative cancer therapeutic nano-formulations. It has been demonstrated that quantum dots, nano-suspensions, and gold nanoparticles can improve drug delivery. Nanomedicines may be delivered more effectively, focusing on cancerous cells instead of healthy tissues, which minimizes undesirable side effects and drug resistance to chemotherapeutic agents. However, limited water solubility, low stability, poor absorption, and quick metabolism limit their therapeutic effectiveness. Nanotechnology has generated unique formulations to optimise the potential use of phytochemicals in anticancer therapy. Nanocomposites can improve phytochemical solubility and bioavailability, extend their half-life in circulation, and even transport phytochemicals to specific locations. The progress in using phytochemical-based nanoparticles in cancer treatment is summarized in this paper.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | | |
Collapse
|
10
|
Phytochemical-conjugated bio-safe gold nanoparticles in breast cancer: a comprehensive update. Breast Cancer 2022; 29:761-777. [PMID: 35578088 DOI: 10.1007/s12282-022-01368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women and is rated among one of the three common malignancies worldwide in combination with colon and lung cancer. The escalating mortality rate of breast cancer patients has captivated the attention of the present-day researchers to come up with new management options. According to WHO, early detection, timely diagnosis and comprehensive breast cancer management are the three cornerstones for controlling breast cancer incidences per year. Multidisciplinary theragnostic approaches for simultaneous diagnosis and treatment of breast cancer have further enriched the therapeutic arsenal. Imaging and biopsy play a significant role in the diagnosis of breast cancer. The treatment plan mostly initiates with general surgery or radiation therapy followed up with adjuvant and/or neoadjuvant therapy. Conventional chemotherapeutics in breast cancer suffer from toxicity and lack of site specificity. Bio-safe gold nanoparticles hold sufficient promise for bridging this gap. Diverse phytochemicals-based synthesis routes to arrive at nano-dimensional gold with spotlight on reaction mechanisms, reaction variables, specific advantages, toxicity and their influence in breast cancer conditions are the focus of this work. This review marks the first attempt to explore the potential of phytochemical-derived nano-gold in breast cancer treatment.
Collapse
|
11
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
12
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
13
|
Xiang Q, Wu Z, Tian EK, Nong S, Liao W, Zheng W. Gold Nanoparticle Drug Delivery System: Principle and Application. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, gold nanoparticles (GNPs) have gradually become a major choice of drug delivery cargoes due to unique properties. Compared to traditional bulk solid gold, GNPs have basic physical and chemical advantages, such as a larger surface area-to-volume ratio and easier surface
modification. Furthermore, these have excellent biocompatibility, can induce the directional adsorption and enrichment of biological macromolecules, help retain biological macromolecule activity, and cause low harm to the human body. All these make GNPs good drug delivery cargoes. The present
study introduces the properties of GNPs, including factors that affect the properties and synthesis. Then, focus was given on the application in drug delivery, not only on the molecular mechanism, but also on the clinical application. Furthermore, the properties and applications of peptide
GNPs were also introduced. Finally, the challenges and prospects of GNPs for drug delivery were summarized.
Collapse
Affiliation(s)
- Qianrong Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Er-Kang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Shiqi Nong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Li W, Cao Z, Yu L, Huang Q, Zhu D, Lu C, Lu A, Liu Y. Hierarchical drug release designed Au @PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. J Nanobiotechnology 2021; 19:143. [PMID: 34001161 PMCID: PMC8130275 DOI: 10.1186/s12951-021-00883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer with a low survival rate and one of the major causes of cancer-related death. Methotrexate (MTX) is an anti-tumor drug used in the treatment of BC. Poor dispersion in water and toxic side effects limit its clinical application. Gold nanoparticles (AuNPs), owing to their specific structures and unique biological and physiochemical properties, have emerged as potential vehicles for tumor targeting, bioimaging and cancer therapy. An innovative nano drug-loading system (Au @PDA-PEG-MTX NPs) was prepared for targeted treatment of BC. Au @PDA-PEG-MTX NPs under near infra-red region (NIR) irradiation showed effective photothermal therapy against MDA-MB-231 human BC cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and generating excessive heat. In vivo studies revealed deep penetration ability of Au @PDA-PEG-MTX NPs under NIR irradiation to find application in cancer-targeted fluorescence imaging, and exhibited effective photothermal therapy against BC xenograft growth by inducing apoptosis. Histopathological analysis, cellular uptake, cytotoxicity assay, and apoptosis experiments indicated that Au @PDA-PEG-MTX NPs possessed a good therapeutic effect with high biocompatibility and fewer side effects. This Au NPs drug-loading system achieved specific targeting of MTX to BC cells by surface functionalisation, fluorescence imaging under laser irradiation, combined photothermal-chemotherapy, and pH- and NIR- triggered hierarchical drug release.
Collapse
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|