1
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Okamoto M, Matsumoto S, Moriyama K, Huang H, Watanabe M, Miura J, Sugiyama K, Hirose Y, Mizuhira M, Kuriki N, Leprince JG, Takahashi Y, Kawabata S, Hayashi M. Biological Evaluation of the Effect of Root Canal Sealers Using a Rat Model. Pharmaceutics 2022; 14:pharmaceutics14102038. [PMID: 36297473 PMCID: PMC9606985 DOI: 10.3390/pharmaceutics14102038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Gutta-percha points and root canal sealers have been used for decades in endodontics for root canal obturation. With techniques such as single cone methods, the amount of sealer is larger, making their properties more critical. However, relatively few reports have comprehensively evaluated their biological effects. To this end, we evaluated three types of sealers, zinc oxide-fatty acid-, bio-glass- and methacrylate resin-containing sealers were considered. Their biological effects were evaluated using a rat subcutaneous implantation model. Each sealer was loaded inside a Teflon tube and implanted subcutaneously in the backs of rats. Inflammatory cells were observed around all samples 7 days after implantation and reduced after 28 days. Our results revealed that all samples were in contact with the subcutaneous tissue surrounding the sealer. Additionally, Ca and P accumulation was observed in only the bio-glass-containing sealer. Furthermore, each of the three sealers exhibited unique immune and inflammatory modulatory effects. In particular, bio-glass and methacrylate resin sealers were found to induce variable gene expression in adjacent subcutaneous tissues related to angiogenesis, wound healing, muscle tissue, and surrounding subcutaneous tissue. These results may help to understand the biological impacts of root canal sealers on surrounding biological tissues, guiding future research and comparisons with new generations of materials.
Collapse
Affiliation(s)
- Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-2927
| | - Sayako Matsumoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Moriyama
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masakatsu Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Osaka University Dental Hospital. 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keita Sugiyama
- Division for Interdisciplinary Dentistry, Osaka University Dental Hospital. 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Manabu Mizuhira
- Bruker Japan K.K. Nano Analytics Division, 3-9 Moriyacho, Yokohama, Kanagawa 221-0022, Japan
| | - Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Julian G. Leprince
- DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Javed S, Mangla B, Ahsan W. From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytother Res 2022; 36:2016-2041. [PMID: 35259776 DOI: 10.1002/ptr.7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|