1
|
Mendes ACM, Monte AFG, Saager RB. Innovative methodology for noninvasive spatial mapping of gold nanoparticle distribution in tissues: potential applications in biomedical imaging and therapy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1337-1346. [PMID: 39889120 DOI: 10.1364/josaa.523717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 02/02/2025]
Abstract
Gold nanoparticles (AuNPs) have emerged as versatile agents in biomedical applications, particularly for enhancing contrast in tagged biological tissues for tumor imaging and diagnostics due to their strong absorption cross-section. In this study, we present a methodology for quantifying the spatial distribution of AuNPs within superficial tissue volumes. Utilizing silicone tissue phantoms as a background medium and spatial frequency domain imaging (SFDI) to measure the tissues' optical properties, we constructed a lookup table (LUT) to infer the optical properties of embedded AuNPs with varying spatial concentrations and depths across multiple spatial frequencies. An analytical solution derived from the LUT facilitated the determination of embedded NP concentration in-depth as a function of measured spatial frequency-dependent optical absorption. Notably, SFDI enabled the spatial localization of NPs in three dimensions. These findings lay the foundation for future in vivo studies on mapping NPs and hold significant promise for advancing biomedical imaging techniques.
Collapse
|
2
|
Fixler D, Tzur C, Zalevsky Z. Genetic Algorithm-Based Design for Metal-Enhanced Fluorescent Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12111766. [PMID: 31151325 PMCID: PMC6600714 DOI: 10.3390/ma12111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we present our optimization tool for fluorophore-conjugated metal nanostructures for the purpose of designing novel contrast agents for multimodal bioimaging. Contrast agents are of great importance to biological imaging. They usually include nanoelements causing a reduction in the need for harmful materials and improvement in the quality of the captured images. Thus, smart design tools that are based on evolutionary algorithms and machine learning definitely provide a technological leap in the fluorescence bioimaging world. This article proposes the usage of properly designed metallic structures that change their fluorescence properties when the dye molecules and the plasmonic nanoparticles interact. The nanostructures design and evaluation processes are based upon genetic algorithms, and they result in an optimal separation distance, orientation angles, and aspect ratio of the metal nanostructure.
Collapse
Affiliation(s)
- Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Chen Tzur
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zeev Zalevsky
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
3
|
Ankri R, Chakraborty R, Motiei M, Fixler D. Three-Dimensional Highly Sensitive Diffusion Reflection-Based Imaging Method for the in Vivo Localization of Atherosclerosis Plaques Following Gold Nanorods Accumulation. ACS OMEGA 2018; 3:6134-6142. [PMID: 30023941 PMCID: PMC6045478 DOI: 10.1021/acsomega.8b00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 05/11/2023]
Abstract
In this work, we present a novel, simple, and highly accurate three-dimensional (3D) diffusion reflection (DR) imaging system and method for the detection of accumulation sites of gold nanorods (GNRs) within the tissue. GNRs are intensively used for diagnosis purposes of varied diseases, mainly because of their ability to well absorb visible light, which introduces them as terrific contrast agents in various imaging and theranostics methods. Lately, these GNRs unique absorption properties have served in DR intensity-based measurements, suggesting a novel diagnostic tool, DR-GNRs. In this paper, we show a new measurement system and method for DR, based on its radial collection from the tissue. These radial measurements enabled a unique 3D presentation of the DR-GNR, introducing the dimensions ρ for the radius, θ for the angle, and Γ for the reflected intensity. On the basis of the diffusion model, which enables to correlate between the sample's optical properties and its reflectance, a unique, radial map is presented. This map introduces the slopes of the DR curves in each measured angle, which are linearly correlated with the tissue's optical properties and with the GNRs concentrations within the tissue, thus enables the exact radial localization of the GNRs in the sample. We show the detection of macrophage accumulation in tissue-like phantoms, as well as the localization of unstable plaques in hyperlipidemic mice, in vivo. This highly accurate, powerful technology paves the way toward a real-time detection method that can be successfully integrated in the rapid increasing field of personalized medicine.
Collapse
Affiliation(s)
| | | | | | - Dror Fixler
- E-mail: . Phone: +972-3-5317598. Fax: +972-3-7384050 (D.F.)
| |
Collapse
|
4
|
Yariv I, Haddad M, Duadi H, Motiei M, Fixler D. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements. Int J Nanomedicine 2016; 11:5237-5244. [PMID: 27785024 PMCID: PMC5066867 DOI: 10.2147/ijn.s119130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg).
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Menashe Haddad
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Mayanei Hayeshua Medical Center, Benei Brak, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Ankri R, Ashkenazy A, Milstein Y, Brami Y, Olshinka A, Goldenberg-Cohen N, Popovtzer A, Fixler D, Hirshberg A. Gold Nanorods Based Air Scanning Electron Microscopy and Diffusion Reflection Imaging for Mapping Tumor Margins in Squamous Cell Carcinoma. ACS NANO 2016; 10:2349-56. [PMID: 26759920 DOI: 10.1021/acsnano.5b07114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A critical challenge arising during a surgical procedure for tumor removal is the determination of tumor margins. Gold nanorods (GNRs) conjugated to epidermal growth factor receptors (EGFR) (GNRs-EGFR) have long been used in the detection of cancerous cells as the expression of EGFR dramatically increases once the tissue becomes cancerous. Optical techniques for the identification of these GNRs-EGFR in tumor are intensively developed based on the unique scattering and absorption properties of the GNRs. In this study, we investigate the distribution of the GNRs in tissue sections presenting squamous cell carcinoma (SCC) to evaluate the SCC margins. Air scanning electron microscopy (airSEM), a novel, high resolution microscopy is used, enabling to localize and actually visualize nanoparticles on the tissue. The airSEM pictures presented a gradient of GNRs from the tumor to normal epithelium, spread in an area of 1 mm, suggesting tumor margins of 1 mm. Diffusion reflection (DR) measurements, performed in a resolution of 1 mm, of human oral SCC have shown a clear difference between the DR profiles of the healthy epithelium and the tumor itself.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | | | | | - Asaf Olshinka
- Department of Plastic Surgery, Rabin Medical Center , Petach Tikva 4941492, Israel
| | - Nitza Goldenberg-Cohen
- Pediatric Unit, Ophthalmology Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel and the Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 6997801, Israel
| | - Aron Popovtzer
- Davidoff Cancer Center, Rabin Medical Center , Beilinson Campus, Petah Tiqwa 4941492, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University , Tel Aviv 6423906, Israel
| |
Collapse
|
6
|
Barnoy EA, Fixler D, Popovtzer R, Nayhoz T, Ray K. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. NANO RESEARCH 2015; 8:3912-3921. [PMID: 26870306 PMCID: PMC4745124 DOI: 10.1007/s12274-015-0891-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study we developed a highly sensitive dual modal imaging system designed for gold nanoparticles (GNPs) conjugated to various fluorophores in solid phantoms. The system consists of fluorescence lifetime imaging microscopy (FLIM) for surface imaging, diffusion reflection (DR) for deep tissue imaging (up to 1cm), and metal enhanced fluorescence (MEF). We detected quenching in fluorescent intensity (FI) for the conjugation of gold nanospheres (GNS) as well as gold nanorods (GNRs) to Fluorescein, which has an excitation peak at a wavelength shorter than the surface plasmon resonance (SPR) of both types of GNPs, and enhanced FI in conjugation to Rhodamine B and Sulforhodamine B, both with excitation peaks in the GNPs' SPR. The enhanced FI was detected in solution as well as in solid phantoms from FLIM measurements. DR measurements detected GNR presence within the solid phantoms by recording dropped rates of light scattering using wavelengths corresponding to the GNRs' absorption. With the inclusion of MEF, this promising dual modal imaging technique enables efficient and sensitive molecular and functional imaging.
Collapse
Affiliation(s)
- Eran A. Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tsviya Nayhoz
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Ankri R, Melzer S, Tarnok A, Fixler D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int J Nanomedicine 2015; 10:4437-46. [PMID: 26185445 PMCID: PMC4501352 DOI: 10.2147/ijn.s86615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we report a potential noninvasive technique for the detection of vulnerable plaques using scatter analyses with flow cytometry (FCM) method combined with the diffusion reflection (DR) method. The atherosclerotic plaques are commonly divided into two major categories: stable and vulnerable. The vulnerable plaques are rich with inflammatory cells, mostly macrophages (MΦ), which release enzymes that break down collagen in the cap. The detection method is based on uptake of gold nanorods (GNR) by MΦ. The GNR have unique optical properties that enable their detection using the FCM method, based on their scattering properties, and using the DR method, based on their unique absorption properties. This work demonstrates that after GNR labeling of MΦ, 1) the FCM scatter values increased up to 3.7-fold with arbitrary intensity values increasing from 1,110 to 4,100 and 2) the DR slope changed from an average slope of 0.196 (MΦ only) to an average slope of 0.827 (MΦ labeled with GNR) (P<0.001 for both cases). The combination of FCM and DR measurements provides a potential novel, highly sensitive, and noninvasive method for the identification of atherosclerotic vulnerable plaques, aimed to develop a potential tool for in vivo tracking.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Susanne Melzer
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Attila Tarnok
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Dror Fixler
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
8
|
Yariv I, Rahamim G, Shliselberg E, Duadi H, Lipovsky A, Lubart R, Fixler D. Detecting nanoparticles in tissue using an optical iterative technique. BIOMEDICAL OPTICS EXPRESS 2014; 5:3871-3881. [PMID: 25426317 PMCID: PMC4242024 DOI: 10.1364/boe.5.003871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 05/30/2023]
Abstract
Determining the physical penetration depth of nanoparticles (NPs) into tissues is a challenge that many researchers have been facing in recent years. This paper presents a new noninvasive method for detecting NPs in tissue using an optical iterative technique based on the Gerchberg-Saxton (G-S) algorithm. At the end of this algorithm the reduced scattering coefficient (µs'), of a given substance, can be estimated from the standard deviation (STD) of the retrieved phase of the remitted light. Presented in this paper are the results of a tissue simulation which indicate a linear ratio between the STD and the scattering components. A linear ratio was also observed in the tissue-like phantoms and in ex vivo experiments with and without NPs (Gold nanorods and nano Methylene Blue). The proposed technique is the first step towards determining the physical penetration depth of NPs.
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Gilad Rahamim
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Elad Shliselberg
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Anat Lipovsky
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| | - Rachel Lubart
- Physics and Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002,
Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002,
Israel
| |
Collapse
|
9
|
Fixler D, Nayhoz T, Ray K. Diffusion Reflection and Fluorescence Lifetime Imaging Microscopy Study of Fluorophore-Conjugated Gold Nanoparticles or Nanorods in Solid Phantoms. ACS PHOTONICS 2014; 1:900-905. [PMID: 25541621 PMCID: PMC4270410 DOI: 10.1021/ph500214m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 05/20/2023]
Abstract
In this paper we report the optical properties of fluorescein-conjugated gold nanoparticles (GNPs) in solid phantoms using diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM). The GNPs attached with fluorescein in solution were studied by fluorescence correlation spectroscopy. The intensity decays were recorded to reveal the fluorescence lifetime of fluorescein while in the near-field vicinity of the GNPs. The DR method was used to explore the solid phantoms containing GNPs, indicating the light propagation from the surface of solid phantoms. The resulting DR slopes of the reflected intensity showed the higher the GNP concentration, the bigger the slope. Fluorescence intensity, lifetime, and anisotropy images of solid phantoms were investigated by FLIM. The exploration of optical properties and molecular imaging combined with DR and FLIM methods is a new approach that has not been established until now. The combined DR-FLIM technique is expected to provide discrimination based on unique spectroscopic fingerprints of GNPs that could be utilized for cell imaging. This paper includes a combined study with a variety of methods, which may lead to multimodal imaging for surfaces (by FLIM) and deep penetration (up to cm by the DR) together.
Collapse
Affiliation(s)
- Dror Fixler
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tsviya Nayhoz
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Krishanu Ray
- Center
for Fluorescence Spectroscopy, Department of Biochemistry and Molecular
Biology, University of Maryland School of
Medicine, Baltimore, Maryland 21201, United
States
- E-mail:
| |
Collapse
|
10
|
Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B. Molecular recognition by gold, silver and copper nanoparticles. World J Biol Chem 2013; 4:35-63. [PMID: 23977421 PMCID: PMC3746278 DOI: 10.4331/wjbc.v4.i3.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health.
Collapse
|
11
|
Jakobsohn K, Motiei M, Sinvani M, Popovtzer R. Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles. Int J Nanomedicine 2012; 7:4707-13. [PMID: 22956871 PMCID: PMC3431967 DOI: 10.2147/ijn.s34157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. METHODS Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. RESULTS The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). CONCLUSION We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue.
Collapse
Affiliation(s)
- Kobi Jakobsohn
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
12
|
Conversano F, Soloperto G, Greco A, Ragusa A, Casciaro E, Chiriacò F, Demitri C, Gigli G, Maffezzoli A, Casciaro S. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. Int J Nanomedicine 2012; 7:4373-89. [PMID: 22927756 PMCID: PMC3420597 DOI: 10.2147/ijn.s33908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 01/12/2023] Open
Abstract
Purpose: To evaluate the diagnostic performance of gold nanorod (GNR)-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety. Methods: The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25–200 pM) and different sample volumes (50–200 μL) were exposed to pulsed laser irradiation. GNR-emitted optoacoustic signals were acquired either by a couple of single-element ultrasound probes or by an echographic transducer. Off-line analysis included: (a) quantitative evaluation of the relationships between GNR concentration, sample volume, phantom geometry, and amplitude of optoacoustic signals propagating along different directions; (b) echographic detection of “optoacoustic spots,” analyzing their intensity, spatial distribution, and clinical exploitability. MTT measurements performed on two different cell lines were also used to quantify biocompatibility of the synthesized GNRs in the adopted doses. Results: Laser irradiation at 30 mJ/cm2 for 20 seconds resulted in the best compromise among the requirements of effectiveness, safety, and nanoparticle stability. Amplitude of GNR-emitted optoacoustic pulses was proportional to both sample volume and concentration along each considered propagation direction for all the tested boundary conditions, providing an experimental confirmation of isotropic optoacoustic emission. Average intensity of echographically detected spots showed similar behavior, emphasizing the presence of an “ideal” GNR concentration (100 pM) that optimized optoacoustic effectiveness. The tested GNRs also exhibited high biocompatibility over the entire considered concentration range. Conclusion: An optimal configuration for GNR-enhanced optoacoustic imaging was experimentally determined, demonstrating in particular its feasibility with a conventional echographic device. The proposed approach can be easily extended to quantitative performance evaluation of different contrast agents for optoacoustic imaging.
Collapse
|