1
|
Elmeshreghi TN, El-Seddawy FD, Gomaa M, Ezzeldein SA, Raouf MAE. Efficacy of a gelatin-based hemostatic sponge and hydroxyapatite-chitosan nanocomposites (nHAp/CS) on regeneration of radial bone defects in rabbits. Open Vet J 2025; 15:198-210. [PMID: 40092175 PMCID: PMC11910267 DOI: 10.5455/ovj.2024.v15.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 03/19/2025] Open
Abstract
Background Bone-graft substitutes are a frequently employed method for the clinical reconstruction of osseous bone defects, and research on synthetic biomaterials is currently ongoing. Absorbable hemostatic gelatin sponge and hydroxyapatite-chitosan nanocomposites (nHAp/CS) have gained popularity in recent years because of their inherent characteristics: osteogenesis, osteoconductivity, osteoinductivity, biodegradability, and biocompatibility. Aim The aim of the study was to evaluate the effectiveness of 1) a gelatin-based hemostatic sponge (Surgispon) and 2) a combination of a weight ratio of 75/25 nHAp/CS composite with a Surgispon for osteogenic potential in the treatment of full-thickness segmental osseous defects in the radius of rabbits. Methods The 18 New Zealand rabbits had 10-mm-induced segmental diaphyseal defects of the left limb radius and were randomly allocated into three groups: group I left the defects untreated (control group), group II used a Surgispon, and group III had a weight ratio of 75/25 nHAp/CS composite wrapped with a Surgispon. Quantitative evaluation of the bone repair at the defect site in each group (n = 6), radiographic, gross, computed tomography (CT), and histopathological examinations were performed at 6 weeks (n = 3) and 12 weeks (n = 3) postoperatively. Results The quantitative statistical analysis of various evaluation methods at 6 weeks post-implantation demonstrated that there was no statistically significant difference between the groups (p > 0.05). The statistically significant differences (p < 0.05) between groups I and II, while groups I and III, were evident 12 weeks postoperatively. Conclusion The findings of the radiographic, macroscopic, CT, and histopathological analyses firmly demonstrate that the combination of a 75/25 weight ratio composite of nHAp/CS with Surgispon is more effective than Surgispon alone in its ability to significantly increase bone formation. This could provide a prospective option for treating segmental bone defects.
Collapse
Affiliation(s)
- Taher Naser Elmeshreghi
- Department of Surgery and Theriogenology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Fathy D. El-Seddawy
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Gomaa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa A. Ezzeldein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa Abd El Raouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Malatesta M. Histochemistry for Molecular Imaging in Nanomedicine. Int J Mol Sci 2024; 25:8041. [PMID: 39125610 PMCID: PMC11311594 DOI: 10.3390/ijms25158041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
All the nanotechnological devices designed for medical purposes have to deal with the common requirement of facing the complexity of a living organism. Therefore, the development of these nanoconstructs must involve the study of their structural and functional interactions and the effects on cells, tissues, and organs, to ensure both effectiveness and safety. To this aim, imaging techniques proved to be extremely valuable not only to visualize the nanoparticles in the biological environment but also to detect the morphological and molecular modifications they have induced. In particular, histochemistry is a long-established science able to provide molecular information on cell and tissue components in situ, bringing together the potential of biomolecular analysis and imaging. The present review article aims at offering an overview of the various histochemical techniques used to explore the impact of novel nanoproducts as therapeutic, reconstructive and diagnostic tools on biological systems. It is evident that histochemistry has been playing a leading role in nanomedical research, being largely applied to single cells, tissue slices and even living animals.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
3
|
Esfandiari S, Amid R, Kadkhodazadeh M, Kheiri A. Comparison of the Volume and Histological Properties of Newly Formed Bone after the Application of Three Types of Bone Substitutes in Critical-Sized Bone Defects. J Long Term Eff Med Implants 2024; 34:17-27. [PMID: 38305367 DOI: 10.1615/jlongtermeffmedimplants.2023046281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to compare the volume and quality of the newly formed bone following application of two types of xenografts and one synthetic material in bone defects in rabbit calvaria from histological and micro-CT aspects. Four 8-mm defects were created in 12 rabbit calvaria. Three defects were filled with bone substitutes and one was left unfilled as the control group. The newly formed bone was evaluated histologically and also by micro-CT at 8 and 12 weeks after the intervention. The percentage of osteogenesis was comparable in histomor-phometric assessment and micro-CT. Histological analysis showed that the percentage of the newly formed bone was 10.92 ± 5.17%, 14.70 ± 11.02%, 11.47 ± 7.04%, and 9.45 ± 5.18% in groups bovine 1, bovine 2, synthetic, and negative control, respectively after 8 weeks. These values were 33.70 ± 11.48%, 26.30 ± 18.05%, 22.92 ± 6.30%, and 14.82 ± 8.59%, respectively at 12 weeks. The difference in the percentage of the new bone formation at 8 and 12 weeks was not significant in any group (P > 0.05) except for bovine 1 group (P < 0.05). Micro-CT confirmed new bone formation in all groups but according to the micro-CT results, the difference between the control and other groups was significant in this respect (P < 0.05). All bone substitutes enhanced new bone formation compared with the control group. Micro-CT assessment yielded more accurate and different results compared with histological assessment.
Collapse
Affiliation(s)
- Shiva Esfandiari
- Department of Biology, School of Science, Shahid Beheshti University, Tehran, Iran
| | - Reza Amid
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Kheiri
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
5
|
Conway JC, Oliver RA, Wang T, Wills DJ, Herbert J, Buckland T, Walsh WR, Gibson IR. The efficacy of a nanosynthetic bone graft substitute as a bone graft extender in rabbit posterolateral fusion. Spine J 2021; 21:1925-1937. [PMID: 34033931 DOI: 10.1016/j.spinee.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Synthetic bone graft substitutes are commonly used in spinal fusion surgery. Preclinical data in a model of spinal fusion to support their efficacy is an important component in clinical adoption to understand how these materials provide a biological and mechanical role in spinal fusion. PURPOSE To evaluate the in vivo response of a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft compared to autograft alone or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft in a rabbit spinal fusion model. STUDY DESIGN Efficacy of a nanosynthetic silicated calcium phosphate putty as an extender to autograft was studied in an experimental animal model of posterolateral spinal fusion at 6, 9, 12 and 26 weeks, compared to a predicate device. METHODS Skeletally mature female New Zealand White rabbits (70) underwent single level bilateral posterolateral intertransverse process lumbar fusion, using either autograft alone (AG), a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft (1:1), or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft (1:1). Iliac crest autograft was harvested for each group, and a total of 2 cc of graft material was implanted in the posterolateral gutters per side. Fusion success was assessed at all time points by manual palpation, radiographic assessment, micro-CT and at 12 weeks only using non-destructive range of motion testing. Tissue response, bone formation and graft resorption were assessed by decalcified paraffin histology and by histomorphometry of PMMA embedded sections. RESULTS Assessment of fusion by manual palpation at the 12 week endpoint showed 7 out of 8 (87.5%) bilateral fusions in the OstP extender group, 4 out of 8 (50%) fusions in the MasP extender group, and 6 out of 8 (75%) fusions in the autograft alone group. Similar trends were observed with fusion scores of radiographic and micro-CT data. Histology showed a normal healing response in all groups, and increased bone formation in the OstP extender group at all timepoints compared to the MasP extender group. New bone formed directly on the OstP granule surface within the fusion mass while this was not a feature of the Collagen-Biphasic CaP material. After 26 weeks the OstP extender group exhibited 100% fusions (5 out of 5) by all measures, whereas the MasP extender group resulted in bilateral fusions in 3 out of 5 (60%), assessed by manual palpation, and fusion of only 20 and 0% by radiograph and micro-CT scoring, respectively. Histology at 26 weeks showed consistent bridging of bone between the transverse processes in the Ost P extender group, but this was not observed in the MasP extender group. CONCLUSIONS The nanosynthetic bone graft substituted studied here, used as an extender to autograft, showed a progression to fusion between 6 and 12 weeks that was similar to that observed with autograft alone, and showed excellent fusion outcomes, bone formation and graft resorption at 26 weeks. CLINICAL SIGNIFICANCE This preclinical study showed that the novel nanosynthetic silicated CaP putty, when combined with autograft, achieved equivalent fusion outcomes to autograft. The development of synthetic bone grafts that demonstrate efficacy in such models can eliminate the need for excessive autograft harvest and results from this preclinical study supports their effective use in spinal fusion surgery.
Collapse
Affiliation(s)
- Jordan C Conway
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Rema A Oliver
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Tian Wang
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Daniel J Wills
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Joe Herbert
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Tom Buckland
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Randwick, Sydney, NSW 2031, Australia
| | - Iain R Gibson
- Sirakoss Ltd., Polwarth Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK.
| |
Collapse
|
6
|
Hogea BG, Patrascu JM, Lazarescu AE, El Mehdi L, Bolovan AD, Hogea LM, Ilie AC, Andor BC, Patrascu JM. Rare Intercondylar Distal Femoral Brodie's Abscess in a 21-Year-Old Man Who Refused Medical Care for Three Years after Initial Symptoms. ACTA ACUST UNITED AC 2021; 57:medicina57060544. [PMID: 34071346 PMCID: PMC8227956 DOI: 10.3390/medicina57060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Brodie's abscess is a rare form of sub-acute osteomyelitis that implies the collection of pus inside bone tissue. The present paper presents an extremely rare case of Brodie's abscess located in the distal femur in a young male patient who refused medical care for three years and presented directly with spontaneous fistula and septic complications. Laboratory tests also suggested chronic septic alterations. Complex imaging investigations including X-ray (RX), computer tomography (CT) and Magnetic Resonance imaging (MRI) confirmed the diagnosis with characteristic aspects, such as the penumbra sign on the T1 weighted MRI image. Management included aggressive debridement, defect reconstruction, and long-term specific antibiotics according to culture harvested intra-operatively. Evolution was positive with inflammatory blood tests returning to physiological values within four weeks and patient full recovery within six months, without any physical deficits. The novelty aspect found in this case presentation is represented by the long-term natural evolution of this pathology, and the fact that even in these conditions, the Brodie's abscess did not evolve into a 'malignant' septic condition, but remained rather benign until the spontaneous fistula prompted the patient to seek medical care.
Collapse
Affiliation(s)
- Bogdan Gheorghe Hogea
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
- ‘Professor Teodor Sora’ Research Center, U.M.F., Nr. 2, 300041 Timisoara, Romania
| | - Jenel Marian Patrascu
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
- ‘Professor Teodor Sora’ Research Center, U.M.F., Nr. 2, 300041 Timisoara, Romania
| | - Adrian Emil Lazarescu
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
- ‘Professor Teodor Sora’ Research Center, U.M.F., Nr. 2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-722-457-459
| | - Louchi El Mehdi
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
| | - Andrei Daniel Bolovan
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
| | - Lavinia Maria Hogea
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
| | - Adrian Cosmin Ilie
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
| | - Bogdan Corneliu Andor
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
- ‘Professor Teodor Sora’ Research Center, U.M.F., Nr. 2, 300041 Timisoara, Romania
| | - Jenel Marian Patrascu
- Faculty of Medicine, University of Medicine and Pharmacy ‘Victor Babes’, Nr. 2, 300041 Timisoara, Romania; (B.G.H.); (J.M.P.J.); (L.M.H.); (A.C.I.); (B.C.A.); (J.M.P.)
- 2nd Clinic of Orthopedics and Traumatology, County Emergency Hospital ‘Pius Branzeu’, Nr. 2, 300041 Timisoara, Romania; (L.E.M.); (A.D.B.)
- ‘Professor Teodor Sora’ Research Center, U.M.F., Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Clinical Outcome After Anterior Lumbar Interbody Fusion With a New Osteoinductive Bone Substitute Material: A Randomized Clinical Pilot Study. Clin Spine Surg 2019; 32:E319-E325. [PMID: 30730430 DOI: 10.1097/bsd.0000000000000802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Pilot, single-center, single-blinded, parallel-group, randomized clinical study. OBJECTIVE The aim of this study was to pilot a randomized clinical study to evaluate whether instrumented anterior lumbar interbody fusion (ALIF) with a new nanocrystalline hydroxyapatite embedded in a silica gel matrix (NH-SiO2) leads to superior radiologic and clinical outcomes at 12-month follow-up compared with instrumented ALIF with homologous bone. SUMMARY OF BACKGROUND DATA ALIF completed with interbody cages is an established technique for performing arthrodesis of the lumbar spine. There is ongoing discussion about which cage-filling material is most appropriate. This is the first study to assess the efficacy of NH-SiO2 in ALIF surgery. MATERIALS AND METHODS This randomized, clinical, pilot trial included 2 groups of 20 patients with monosegmental or multisegmental degenerative disease of the lumbar spine who were suitable to undergo monosegmental or bisegmental ALIF fusion at the level L4/L5 and L5/S1 with a carbon fiber reinforced polymer ALIF cage filled with either NH-SiO2 or homogenous bone. Primary outcome was postoperative disability as measured by the Oswestry Disability Index (ODI). Secondary outcomes were postoperative radiographic outcomes, pain, and quality of life. Patients were followed 12 months postoperatively. RESULTS Mean (±SD) 12-month ODI was 24±17 in the NH-SiO2 group and 27±19 in the homologous bone group (P=0.582). Postoperative radiography, functional outcomes, and quality-of-life indices did not differ significantly between groups at any of the regularly scheduled follow-up visits. CONCLUSIONS This clinical study showed similar functional, radiologic, and clinical outcomes 12 months postoperatively for instrumented ALIF procedures with the use of NH-SiO2 or homologous bone as cage filling. In the absence of any relevant differences in outcome, we postulate that the pivotal clinical study should be designed as an equivalence trial.
Collapse
|
8
|
Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro. Int J Cell Biol 2019; 2019:6943986. [PMID: 31191656 PMCID: PMC6525930 DOI: 10.1155/2019/6943986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; “MARGSVSDEE”) suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy in vitro in osteoclast cultures. L-plastin MARGSVSDEE (P1) and scrambled control (P3) peptide-loaded PLGA-PEG nanoparticles (NP1 and NP3, respectively) were synthesized by double emulsion technique. The biological effect of nanoparticles on osteoclasts was evaluated by immunoprecipitation, immunoblotting, rhodamine-phalloidin staining of actin filaments, and pit forming assays. Physical characterization of well-dispersed NP1 and NP3 demonstrated ~130-150 nm size, < 0.07 polydispersity index, ~-3 mV ζ-potential, and a sustained release of the peptide for three weeks. Biological characterization in osteoclast cultures demonstrated the following: NP1 significantly reduced (a) endogenous L-plastin phosphorylation; (b) formation of NSZs and sealing rings; (c) resorption. However, the assembly of podosomes which are critical for cell adhesion was not affected. L-plastin peptide-loaded PLGA-PEG nanocarriers have promising potential for the treatment of diseases associated with bone loss. Future studies will use this sustained release of peptide strategy to systematically suppress osteoclast bone resorption activity in vivo in mouse models demonstrating bone loss.
Collapse
|
9
|
Li JJ, Dunstan CR, Entezari A, Li Q, Steck R, Saifzadeh S, Sadeghpour A, Field JR, Akey A, Vielreicher M, Friedrich O, Roohani‐Esfahani S, Zreiqat H. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Adv Healthc Mater 2019; 8:e1801298. [PMID: 30773833 DOI: 10.1002/adhm.201801298] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Achieving adequate healing in large or load-bearing bone defects is highly challenging even with surgical intervention. The clinical standard of repairing bone defects using autografts or allografts has many drawbacks. A bioactive ceramic scaffold, strontium-hardystonite-gahnite or "Sr-HT-Gahnite" (a multi-component, calcium silicate-based ceramic) is developed, which when 3D-printed combines high strength with outstanding bone regeneration ability. In this study, the performance of purely synthetic, 3D-printed Sr-HT-Gahnite scaffolds is assessed in repairing large and load-bearing bone defects. The scaffolds are implanted into critical-sized segmental defects in sheep tibia for 3 and 12 months, with bone autografts used for comparison. The scaffolds induce substantial bone formation and defect bridging after 12 months, as indicated by X-ray, micro-computed tomography, and histological and biomechanical analyses. Detailed analysis of the bone-scaffold interface using focused ion beam scanning electron microscopy and multiphoton microscopy shows scaffold degradation and maturation of the newly formed bone. In silico modeling of strain energy distribution in the scaffolds reveal the importance of surgical fixation and mechanical loading on long-term bone regeneration. The clinical application of 3D-printed Sr-HT-Gahnite scaffolds as a synthetic bone substitute can potentially improve the repair of challenging bone defects and overcome the limitations of bone graft transplantation.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Raymond Purves Bone and Joint Research Laboratories Institute of Bone and Joint Research Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney St Leonards NSW 2065 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
| | - Colin R. Dunstan
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
| | - Ali Entezari
- School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
| | - Qing Li
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
| | - Roland Steck
- Medical Engineering Research Facility (MERF) Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Prince Charles Hospital Campus Brisbane QLD 4000 Australia
| | - Siamak Saifzadeh
- Medical Engineering Research Facility (MERF) Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Prince Charles Hospital Campus Brisbane QLD 4000 Australia
| | - Ameneh Sadeghpour
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- Allegra Orthopaedics Limited Sydney NSW 2000 Australia
| | - John R. Field
- Centre for Orthopaedic Trauma and Research University of Adelaide Adelaide SA 5000 Australia
| | - Austin Akey
- Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA
| | - Martin Vielreicher
- Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich Alexander University of Erlangen‐Nürnberg Erlangen 91052 Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich Alexander University of Erlangen‐Nürnberg Erlangen 91052 Germany
| | | | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Training Centre for Innovative BioEngineering Sydney NSW 2006 Australia
- Radcliffe Institute for Advanced Study Harvard University Cambridge MA 02138 USA
| |
Collapse
|
10
|
Hettwer W, Horstmann PF, Bischoff S, Güllmar D, Reichenbach JR, Poh PSP, van Griensven M, Gras F, Diefenbeck M. Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur. APMIS 2019; 127:53-63. [PMID: 30698307 PMCID: PMC6850422 DOI: 10.1111/apm.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 01/17/2023]
Abstract
Assessment of bone graft material efficacy is difficult in humans, since invasive methods like staged CT scans or biopsies are ethically unjustifiable. Therefore, we developed a novel large animal model for the verification of a potential transformation of synthetic bone graft substitutes into vital bone. The model combines multiple imaging methods with corresponding histology in standardized critical sized cancellous bone defect. Cylindrical bone voids (10 ml) were created in the medial femoral condyles of both hind legs (first surgery at right hind leg, second surgery 3 months later at left hind leg) in three merino‐wool sheep and either (i) left empty, filled with (ii) cancellous allograft bone or (iii) a synthetic, gentamicin eluting bone graft substitute. All samples were analysed with radiographs, MRI, μCT, DEXA and histology after sacrifice at 6 months. Unfilled defects only showed ingrowth of fibrous tissue, whereas good integration of the cancellous graft was seen in the allograft group. The bone graft substitute showed centripetal biodegradation and new trabecular bone formation in the periphery of the void as early as 3 months. μCT gave excellent insight into the structural changes within the defects, particularly progressive allograft incorporation and the bone graft substitute biodegradation process. MRI completed the picture by clearly visualizing soft tissue ingrowth into unfilled bone voids and presence of fluid collections. Histology was essential for verification of trabecular bone and osteoid formation. Conventional radiographs and DEXA could not differentiate details of the ongoing transformation process. This model appears well suited for detailed in vivo and ex vivo evaluation of bone graft substitute behaviour within large bone defects.
Collapse
Affiliation(s)
- Werner Hettwer
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter F Horstmann
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sabine Bischoff
- Central Experimental Animal Facility, University Hospital Jena, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Patrina S P Poh
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Gras
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Jena, Germany
| | - Michael Diefenbeck
- BONESUPPORT AB, Lund, Sweden.,Scientific Consulting in Orthopaedic Surgery and Traumatology, Hamburg, Germany
| |
Collapse
|
11
|
Lu S, McGough MAP, Shiels SM, Zienkiewicz KJ, Merkel AR, Vanderburgh JP, Nyman JS, Sterling JA, Tennent DJ, Wenke JC, Guelcher SA. Settable polymer/ceramic composite bone grafts stabilize weight-bearing tibial plateau slot defects and integrate with host bone in an ovine model. Biomaterials 2018; 179:29-45. [PMID: 29960822 PMCID: PMC6065109 DOI: 10.1016/j.biomaterials.2018.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
Abstract
Bone fractures at weight-bearing sites are challenging to treat due to the difficulty in maintaining articular congruency. An ideal biomaterial for fracture repair near articulating joints sets rapidly after implantation, stabilizes the fracture with minimal rigid implants, stimulates new bone formation, and remodels at a rate that maintains osseous integrity. Consequently, the design of biomaterials that mechanically stabilize fractures while remodeling to form new bone is an unmet challenge in bone tissue engineering. In this study, we investigated remodeling of resorbable bone cements in a stringent model of mechanically loaded tibial plateau defects in sheep. Nanocrystalline hydroxyapatite-poly(ester urethane) (nHA-PEUR) hybrid polymers were augmented with either ceramic granules (85% β-tricalcium phosphate/15% hydroxyapatite, CG) or a blend of CG and bioactive glass (BG) particles to form a settable bone cement. The initial compressive strength and fatigue properties of the cements were comparable to those of non-resorbable poly(methyl methacrylate) bone cement. In animals that tolerated the initial few weeks of early weight-bearing, CG/nHA-PEUR cements mechanically stabilized the tibial plateau defects and remodeled to form new bone at 16 weeks. In contrast, cements incorporating BG particles resorbed with fibrous tissue filling the defect. Furthermore, CG/nHA-PEUR cements remodeled significantly faster at the full weight-bearing tibial plateau site compared to the mechanically protected femoral condyle site in the same animal. These findings are the first to report a settable bone cement that remodels to form new bone while providing mechanical stability in a stringent large animal model of weight-bearing bone defects near an articulating joint.
Collapse
Affiliation(s)
- Sichang Lu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Madison A P McGough
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stefanie M Shiels
- Extremity Trauma and Regenerative Medicine Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - Katarzyna J Zienkiewicz
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alyssa R Merkel
- Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA; Department of Veterans Affairs, Nashville, TN, USA
| | - Joseph P Vanderburgh
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jeffry S Nyman
- Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA; Department of Orthopedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Julie A Sterling
- Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA; Department of Veterans Affairs, Nashville, TN, USA
| | - David J Tennent
- Extremity Trauma and Regenerative Medicine Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
12
|
Li JJ, Akey A, Dunstan CR, Vielreicher M, Friedrich O, Bell DC, Zreiqat H. Effects of Material-Tissue Interactions on Bone Regeneration Outcomes Using Baghdadite Implants in a Large Animal Model. Adv Healthc Mater 2018; 7:e1800218. [PMID: 29877058 DOI: 10.1002/adhm.201800218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Indexed: 12/13/2022]
Abstract
Extensive bone loss due to trauma or disease leads to impaired healing. Current bone grafts and substitutes have major drawbacks that limit their effectiveness for treating large bone defects. A number of bone substitutes in development are undergoing preclinical testing, but few studies specifically investigate the in vivo material-tissue interactions that provide an important indicator to long-term implant safety and efficacy. This study is the first of its kind to specifically investigate in vivo material-tissue interactions at the bone-implant interface. Baghdadite scaffolds implanted in critical-sized segmental defects in sheep tibia for 26 weeks are analyzed by focused ion beam scanning electron microscopy, multiphoton microscopy, and histology. The scaffolds are seen to induce extensive bone formation that directly abut the implant surfaces with no evidence of chronic inflammation or fibrous capsule formation. Bone remodeling is influenced by slow in vivo degradation around and within the implant, causing portions of the implant to be incorporated into the newly formed bone. These findings have important implications for predicting the long-term effects of baghdadite ceramics in promoting defect healing, and support the translation of baghdadite scaffolds as a new generation of bone graft substitutes with improved properties for the repair of large bone defects.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Austin Akey
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Martin Vielreicher
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, 91052, Germany
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, 91052, Germany
| | - David C Bell
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
13
|
Reitmaier S, Kovtun A, Schuelke J, Kanter B, Lemm M, Hoess A, Heinemann S, Nies B, Ignatius A. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds. J Orthop Res 2018; 36:106-117. [PMID: 28574614 DOI: 10.1002/jor.23623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/28/2017] [Indexed: 02/04/2023]
Abstract
Calcium phosphate cements (CPCs) are widely used for bone-defect treatment. Current developments comprise the fabrication of porous scaffolds by three-dimensional plotting and doting using biologically active substances, such as strontium. Strontium is known to increase osteoblast activity and simultaneously to decrease osteoclast resorption. This study investigated the short- and long-term in vivo performances of strontium(II)-doted CPC (SrCPC) scaffolds compared to non-doted CPC scaffolds after implantation in unloaded or load-bearing trabecular bone defects in sheep. After 6 weeks, both CPC and SrCPC scaffolds exhibited good biocompatibility and osseointegration. Fluorochrome labeling revealed that both scaffolds were penetrated by newly formed bone already after 4 weeks. Neither strontium doting nor mechanical loading significantly influenced early bone formation. In contrast, after 6 months, bone formation was significantly enhanced in SrCPC compared to CPC scaffolds. Energy dispersive X-ray analysis demonstrated the release of strontium from the SrCPC into the bone. Strontium addition did not significantly influence material resorption or osteoclast formation. Mechanical loading significantly stimulated bone formation in both CPC and SrCPC scaffolds after 6 months without impairing scaffold integrity. The most bone was found in SrCPC scaffolds under load-bearing conditions. Concluding, these results demonstrate that strontium doting and mechanical loading additively stimulated bone formation in CPC scaffolds and that the scaffolds exhibited mechanical stability under moderate load, implying good clinical suitability. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:106-117, 2018.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Anna Kovtun
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Julian Schuelke
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Britta Kanter
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Madlin Lemm
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Andreas Hoess
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | | | - Berthold Nies
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Anita Ignatius
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| |
Collapse
|
14
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
15
|
Naghavi Sheikholeslami S, Rafizadeh M, Afshar Taromi F, Shirali H. In-Situ Preparation of Poly(butylene succinate-co-butylene fumarate)/Hydroxyapatite Nanocomposite. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sogol Naghavi Sheikholeslami
- Department of Polymer Engineering
and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mehdi Rafizadeh
- Department of Polymer Engineering
and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering
and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Hadi Shirali
- Department of Polymer Engineering
and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
16
|
van der Heijden L, Dijkstra PDS, Blay JY, Gelderblom H. Giant cell tumour of bone in the denosumab era. Eur J Cancer 2017; 77:75-83. [PMID: 28365529 DOI: 10.1016/j.ejca.2017.02.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
Giant cell tumour of bone (GCTB) is an intermediate locally aggressive primary bone tumour, occurring mostly at the meta-epiphysis of long bones. Overexpression of receptor activator of nuclear factor kappa-B ligand (RANKL) by mononuclear neoplastic stromal cells promotes recruitment of numerous reactive multinucleated osteoclast-like giant cells, causing lacunar bone resorption. Preferential treatment is curettage with local adjuvants such as phenol, alcohol or liquid nitrogen. The remaining cavity may be filled with bone graft or polymethylmethacrylate (PMMA) bone cement; benefits of the latter are a lower risk of recurrence, possibility of direct weight bearing and early radiographic detection of recurrences. Reported recurrence rates are comparable for the different local adjuvants (27-31%). Factors increasing the local recurrence risk include soft tissue extension and anatomically difficult localisations such as the sacrum. When joint salvage is impossible, en-bloc resection and endoprosthetic joint replacement may be performed. Local tumour control on the one hand and maintenance of a functional native joint and quality of life on the other hand are the main pillars of surgical treatment for this disease. Current knowledge and development in the fields of imaging, functional biology and systemic therapy are forcing us into a paradigm shift from a purely surgical approach towards a multidisciplinary approach. Systemic therapy with denosumab (RANKL inhibitor) or zoledronic acid (bisphosphonates) blocks, respectively inhibits, bone resorption by osteoclast-like giant cells. After use of zoledronic acid, stabilisation of local and metastatic disease has been reported, although the level of evidence is low. Denosumab is more extensively studied in two prospective trials, and appears effective for the optimisation of surgical treatment. Denosumab should be considered in the standard multidisciplinary treatment of advanced GCTB (e.g. cortical destruction, soft tissue extension, joint involvement or sacral localisation) to facilitate surgery at a later stage, and thereby aiming at immediate local control. Even though several questions concerning optimal treatment dose, duration and interval and drug safety remain unanswered, denosumab is among the most effective drug therapies in oncology.
Collapse
Affiliation(s)
- Lizz van der Heijden
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - P D Sander Dijkstra
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
17
|
Sadeghi R, Najafi M, Semyari H, Mashhadiabbas F. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit. J Orofac Orthop 2017; 78:144-152. [PMID: 28130564 DOI: 10.1007/s00056-016-0067-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/07/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Bone regeneration is an important concern in periodontal treatment and implant dentistry. Different biomaterials and surgical techniques have been used for this purpose. The aim of the present study was to compare the effect of nanocrystalline hydroxyapatite and human freeze-dried bone graft (FDBG) in regeneration of rabbit calvarium bony defects by histologic and histomorphometric evaluation. METHODS In this experimental study, three similar defects, measuring 8 mm in diameter, were created in the calvaria of 16 white New Zealand rabbits. Two defects were filled with FDBG and nanocrystalline hydroxyapatite silica gel, while the other one remained unfilled to be considered as control. All the defects were covered with collagen membranes. During the healing period, two animals perished; so 14 rabbits were divided into two groups: half of them were euthanized after 6 weeks of healing and the other half after 12 weeks. The specimens were subjected to histologic and histomorphometric examinations for assessment of the following variables: percentage of bone formation and residual graft material, inflammation scores, patterns of bone formation and type of newly formed bone. RESULTS The percentages of new bone formation after 6 weeks were 14.22 ± 7.85, 21.57 ± 6.91, and 20.54 ± 10.07% in FDBG, NanoBone, and control defects. These values were 27.54 ± 20.19, 23.86 ± 6.27, and 26.48 ± 14.18% in 12-week specimens, respectively. No significant differences were found in the amount of bone formation between the groups. With regard to inflammation, the control and NanoBone groups showed significantly less inflammation compared to FDBG at the 6-week healing phase (P = 0.04); this difference was not significant in the 12-week specimens. CONCLUSIONS Based on the results of this experimental study, both NanoBone and FDBG exhibited a similar effect on bone formation.
Collapse
Affiliation(s)
- Rokhsareh Sadeghi
- Department of Periodontics, Faculty of Dentistry, Shahed University, 37, Italia St., Vesal Ave., Tehran, 1417755351, Iran.
| | - Mohammad Najafi
- Department of Periodontics, Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Hassan Semyari
- Department of Periodontics, Faculty of Dentistry, Shahed University, 37, Italia St., Vesal Ave., Tehran, 1417755351, Iran
| | - Fatemeh Mashhadiabbas
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
In situ polymerized poly(butylene succinate-co-ethylene terephthalate)/hydroxyapatite nanocomposite with adjusted thermal, mechanical and hydrolytic degradation properties. Macromol Res 2016. [DOI: 10.1007/s13233-016-4131-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Weigand A, Beier JP, Hess A, Gerber T, Arkudas A, Horch RE, Boos AM. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A 2015; 21:1680-94. [PMID: 25760576 DOI: 10.1089/ten.tea.2014.0568] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue ingrowth and remodeling processes of the bone substitute. Extrinsic vessels contribute to faster vascularization and finally anastomose with intrinsic vasculature, allowing microvascular transplantation of the bone substitute after a shorter prevascularization time than using the intrinsic method only. It can be reasonably assumed that the usage of perforated chambers can significantly reduce the time until transplantation of bone constructs. Finally, this study paves the way for further preclinical testing for proof of the concept as a basis for early clinical applicability.
Collapse
Affiliation(s)
- Annika Weigand
- 1 Department of Plastic and Hand Surgery, University Hospital of Erlangen , Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Malhotra A, Pelletier MH, Yu Y, Christou C, Walsh WR. A sheep model for cancellous bone healing. Front Surg 2014; 1:37. [PMID: 25593961 PMCID: PMC4286987 DOI: 10.3389/fsurg.2014.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
Appropriate well-characterized bone defect animal models remain essential for preclinical research. This pilot study demonstrates a relevant animal model for cancellous bone defect healing. Three different defect diameters (8, 11, 14 mm) of fixed depth (25 mm) were compared in both skeletally immature (18-month-old) and aged sheep (5-year-old). In each animal, four defects were surgically created and placed in the cancellous bone of the medial distal femoral and proximal tibial epiphyses bilaterally. Animals were euthanized at 4 weeks post-operatively to assess early healing and any biological response. Defect sites were graded radiographically, and new bone formation quantified using μCT and histomorphometry. Fibrous tissue was found within the central region in most of the defects with woven bone normally forming near the periphery of the defect. Bone volume fraction [bone volume (BV)/TV] significantly decreased with an increasing defect diameter. Actual BV, however, increased with defect diameter. Bone ingrowth was lower for all defect diameters in the aged group. This pilot study proposes that the surgical creation of 11 mm diameter defects in the proximal tibial and distal femoral epiphyses of aged sheep is a suitable large animal model to study early healing of cancellous bone defects. The refined model allows for the placement of four separate bone defects per animal and encourages a reduction in animal numbers required for preclinical research.
Collapse
Affiliation(s)
- Angad Malhotra
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales , Sydney, NSW , Australia
| | - Matthew Henry Pelletier
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales , Sydney, NSW , Australia
| | - Yan Yu
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales , Sydney, NSW , Australia
| | - Chris Christou
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales , Sydney, NSW , Australia
| | - William Robert Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
21
|
Eldibany R, Shokry M. The effect of Nanobone® in combination with platelet rich fibrin on bone regeneration following enucleation of large mandibular cysts. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tdj.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Atayde LM, Cortez PP, Pereira T, Armada-da-Silva PAS, Afonso A, Lopes MA, Santos JD, Maurício AC. A new sheep model with automatized analysis of biomaterial-induced bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1885-1901. [PMID: 24771285 DOI: 10.1007/s10856-014-5216-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Presently, several bone graft substitutes are being developed or already available for clinical use. However, the limited number of clinical and in vivo trials for direct comparison between these products may complicate this choice. One of the main reasons for this scarcity it is the use of models that do not readily allow the direct comparison of multiple bone graft substitutes, due especially to the small number of implantation sites. Although sheep cancellous bone models are now well established for these purposes, the limited availability of cancellous bone makes it difficult to find multiple comparable sites within a same animal. These limitations can be overcome by the monocortical model here proposed as it consists in 5-6 holes (5 mm Ø), in the femoral diaphysis, with similar bone structure, overlying soft tissue and loading pattern for all defects. Associated to this model, it is also described a fast histomorphometric analysis method using a computer image segmentation test (Threshold method) to assess bone regeneration parameters. The information compiled through the experimental use of 45 sheep in several studies allowed determining that this ovine model has the potential to demonstrate differences in bone-forming performance between various scaffolds. Additionally, the described histomorphometric method is fast, accurate and reproducible.
Collapse
Affiliation(s)
- L M Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, 4050-313, Porto, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rentsch C, Schneiders W, Manthey S, Rentsch B, Rammelt S. Comprehensive histological evaluation of bone implants. BIOMATTER 2014; 4:27993. [PMID: 24504113 DOI: 10.4161/biom.27993] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate and assess bone regeneration in sheep in combination with new implant materials classical histological staining methods as well as immunohistochemistry may provide additional information to standard radiographs or computer tomography. Available published data of bone defect regenerations in sheep often present none or sparely labeled histological images. Repeatedly, the exact location of the sample remains unclear, detail enlargements are missing and the labeling of different tissues or cells is absent. The aim of this article is to present an overview of sample preparation, staining methods and their benefits as well as a detailed histological description of bone regeneration in the sheep tibia. General histological staining methods like hematoxylin and eosin, Masson-Goldner trichrome, Movat's pentachrome and alcian blue were used to define new bone formation within a sheep tibia critical size defect containing a polycaprolactone-co-lactide (PCL) scaffold implanted for 3 months (n = 4). Special attention was drawn to describe the bone healing patterns down to cell level. Additionally one histological quantification method and immunohistochemical staining methods are described.
Collapse
Affiliation(s)
- Claudia Rentsch
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Wolfgang Schneiders
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany
| | - Suzanne Manthey
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Barbe Rentsch
- University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Stephan Rammelt
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| |
Collapse
|
24
|
Fan RR, Zhou LX, Song W, Li DX, Zhang DM, Ye R, Zheng Y, Guo G. Preparation and properties of g-TTCP/PBS nanocomposites and its in vitro biocompatibility assay. Int J Biol Macromol 2013; 59:227-34. [PMID: 23624285 DOI: 10.1016/j.ijbiomac.2013.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/07/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
In an effort to decrease the aggregation of tetracalcium phosphate (TTCP, Ca4(PO4)2O) in composites and develop better bone substitute materials, a series of poly(l-lactic acid) (PLLA)-grafted TTCP (g-TTCP) particles were prepared by a ring-opening polymerization with l-lactide (the monomer for synthesizing PLLA) in the presence of catalyst stannous octoate [Sn(Oct)2]. The g-TTCP/poly(1,4-butylene succinate) (PBS) composites with the different g-TTCP contents were prepared via melting processing. The bonding between the PLLA and the TTCP particles was analyzed by FTIR, TG, (1)H NMR and XPS. The results confirmed that the PLLA was grafted on the surface of the TTCP particles. Time-dependent phase monitoring indicated that the g-TTCP had enhanced dispersion in the PBS solution. Water contact angle measurement and cell culture were also used to investigate the properties of the g-TTCP/PBS composites. The g-TTCP in composites provided more favorable environments for rat osteoblast to attach and grow on the surface of the g-TTCP/PBS composites. Cell proliferated well in the extracted solution of the g-TTCP/PBS composites with different g-TTCP content, and there was no necrotic or suspended cells appeared.
Collapse
Affiliation(s)
- Rang Rang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | |
Collapse
|