1
|
Ceballos-Sanchez O, Navarro-López DE, Mejía-Méndez JL, Sanchez-Ante G, Rodríguez-González V, Sánchez-López AL, Sanchez-Martinez A, Duron-Torres SM, Juarez-Moreno K, Tiwari N, López-Mena ER. Enhancing antioxidant properties of CeO 2 nanoparticles with Nd 3+ doping: structural, biological, and machine learning insights. Biomater Sci 2024; 12:2108-2120. [PMID: 38450552 DOI: 10.1039/d3bm02107f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The antioxidant capabilities of nanoparticles are contingent upon various factors, including their shape, size, and chemical composition. Herein, novel Nd-doped CeO2 nanoparticles were synthesized and the neodymium content was varied to investigate the synergistic impact on the antioxidant properties of CeO2 nanoparticles. Incorporating Nd3+ induced changes in lattice parameters and significantly altered the morphology from nanoparticles to nanorods. The biological activity of Nd-doped CeO2 was examined against pathogenic bacterial strains, breast cancer cell lines, and antioxidant models. The antibacterial and anticancer activities of nanoparticles were not observed, which could be associated with the Ce3+/Ce4+ ratio. Notably, the incorporation of neodymium improved the antioxidant capacity of CeO2. Machine learning techniques were employed to forecast the antioxidant activity to enhance understanding and predictive capabilities. Among these models, the random forest model exhibited the highest accuracy at 96.35%, establishing it as a robust computational tool for elucidating the biological behavior of Nd-doped CeO2 nanoparticles. This study presents the first exploration of the influence of Nd3+ on the structural, optical, and biological attributes of CeO2, contributing valuable insights and extending the application of machine learning in predicting the therapeutic efficacy of inorganic nanomaterials.
Collapse
Affiliation(s)
- Oscar Ceballos-Sanchez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Jorge L Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, 72810 Cholula, Puebla, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Vicente Rodríguez-González
- División de Materiales Avanzados, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Angélica Lizeth Sánchez-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Araceli Sanchez-Martinez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Sergio M Duron-Torres
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas, Guadalajara Km 6, Ejido La Escondida, 98160, Zacatecas, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, Mexico
| | - Naveen Tiwari
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), C/Jenaro de la Fuente s/n, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| |
Collapse
|
2
|
Alyami NM, Alobadi H, Maodaa S, Alothman NS, Almukhlafi H, Yaseen KN, Alnakhli ZA, Alshiban NM, Elnagar DM, Rady A, Alharthi WA, Almetari B, Almeer R, Alarifi S, Ali D. Determination of dose- and time-dependent hepatotoxicity and apoptosis of Lanthanum oxide nanoparticles in female Swiss albino mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17124-17139. [PMID: 38334922 DOI: 10.1007/s11356-024-32209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Nanosized lanthanum oxide particles (La2O3) are commonly utilized in various industries. The potential health risks associated with La2O3 nanoparticles, cytotoxic effects at varying doses and time intervals, and the mechanisms behind their induction of behavioral changes remain uncertain and necessitate further investigation. Therefore, this study examined in vivo hepatotoxicity, considering the quantity (60, 150, and 300 mg/kg) and time-dependent induction of reactive oxygen species (ROS) over one week or 21 days. The mice received intraperitoneal injections of three different concentrations in Milli-Q water. Throughout the experiments, no physical changes or weight loss were observed among the groups. However, after 21 days, only the highest concentration showed signs of anxiety in the activity cage (p < 0.05). Subsequently, all animals treated with La2O3 NPs exhibited a significant loss of learning and memory recall using the Active Avoidances test, after 21 days (p < 0.001). Markers for anti-reactive oxygen species (ROS) such as superoxide dismutase (SOD) were significantly upregulated in response to all concentrations of NPs after seven days compared to the control group. This was confirmed by a significant increase in glutathione peroxidase (Gpx1) and pro-apoptotic Caspase-3 expression at the lowest and highest doses. Additionally, both transcription and protein levels of the anti-apoptotic BCL-2 surpassed P53 protein in a dosage-dependent manner, indicating activation of the primary anti-apoptosis pathway. After 21 days, P53 levels exceeded BCL-2 protein levels, confirming a significant loss of BCL-2 mRNA, particularly at the 300 mg/kg concentration. Furthermore, a higher transcription level of Caspase-3, SOD, and Gpx1 was observed, with the highest values detected at the 300 mg/kg concentration, indicating the activation of cell death. Histopathological analysis of the liver illustrated apoptotic bodies resulting from La2O3 NP concentration. The investigation revealed multiple inflammatory foci, cytoplasmic degeneration, steatosis, and DNA fragmentation consistent with increased damage over time due to higher concentrations. Blood samples were also analyzed to determine liver enzymatic changes, including alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), and lipid profiles. The results showed significant differences among all La2O3 NP concentrations, with the most pronounced damage observed at the 300 mg/kg dose even after 21 days. Based on an animal model, this study suggests that La2O3 hepatotoxicity is likely caused by the size and shape of nanoparticles (NPs), following a dose and time-dependent mechanism that induces the production of reactive oxygen species and behavioral changes such as anxiety and memory loss.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Hussah Alobadi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Norah S Alothman
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Hanouf Almukhlafi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Khadijah N Yaseen
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Zainab A Alnakhli
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Noura M Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Doaa M Elnagar
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Wed A Alharthi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Bader Almetari
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Liu D, Wu X, Hu C, Zeng Y, Pang Q. Neodymium affects the generation of reactive oxygen species via GSK-3β/Nrf2 signaling in the gill of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106621. [PMID: 37393733 DOI: 10.1016/j.aquatox.2023.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/11/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Rare earth element neodymium (Nd) is widely used in industry and agriculture, which may result in the pollution of aquatic environment. In this study, we exposed zebrafish with 10, 50, and 100 μg/L Nd for four weeks. The results showed that Nd could be accumulated in fish gill and Nd accumulation affected the equilibrium of nutrient elements. Nd decreased the antioxidant enzymes' activity and gene expression level, but enhanced the generation of reactive oxygen species (ROS). Moreover, various concentration of Nd treatments inhibited Nrf2 signaling in gill. To examine the critical role of GSK-3β/Nrf2 signaling on ROS generation under Nd stress, we further interfered gsk-3β gene in zebrafish under 100 μg/L Nd exposure. The result showed that gsk-3β gene interference induced Nrf2 signaling as well as the expression and activity of antioxidant enzymes in fish gill. In all, Nd could be accumulated in fish gill, and the signaling of GSK-3β/Nrf2 was involved in regulating ROS generation under Nd treatments.
Collapse
Affiliation(s)
- Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| | - Xue Wu
- Zibo Mashang Central Hospital, Zhangdian, Shandong, Zibo 255000, China
| | - Cun Hu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Yujie Zeng
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
4
|
Ranjbary AG, Saleh GK, Azimi M, Karimian F, Mehrzad J, Zohdi J. Superparamagnetic Iron Oxide Nanoparticles Induce Apoptosis in HT-29 Cells by Stimulating Oxidative Stress and Damaging DNA. Biol Trace Elem Res 2023; 201:1163-1173. [PMID: 35451693 DOI: 10.1007/s12011-022-03229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles have garnered considerable scientific attention in recent years due to their diagnostic and therapeutic applications in cancer. The purpose of this study was to determine the effect of superparamagnetic iron oxide nanoparticles (Fe3O4 MNPs) on the induction of apoptosis in human colorectal adenocarcinoma cell line (HT-29) cells. The purpose of this study was to elucidate the mechanisms of apoptosis induced by Fe3O4 MNPs following MTT assay and to determine the optimal dose of 2.5 g/mL for inducing apoptosis in HT-29 cells. In HT-29 cells, Fe3O4 MNPs increased reactive oxygen species (ROS), calcium ion (Ca2+), and DNA damage. Additionally, the Fe3O4 MNPs significantly increased caspase 3 and 9 expression and decreased Bcl-2 expression at the protein and mRNA levels when compared to the control group (P = 0.0001). Fe3O4 MNPs also induced apoptosis in cancer cells by increasing the level of (ROS) and intracellular Ca2+, followed by an increase in caspase 3 and 9 expression and a decrease in Bcl-2 expression and direct DNA damage. Fe3O4 MNPs are an appropriate choice for colon cancer treatment based on their cell toxicity and induction of apoptosis in HT29 cells.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
- The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammadreza Azimi
- Department of Biochemistry, Medical Faculty, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Fatemeh Karimian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Javad Zohdi
- Faculty of Veterinary Medicine, Department of Immunology and Oncology, Islamic Azad University-Garmsar Branch, Garmsar, Iran
| |
Collapse
|
5
|
Alshammari GM. Cytotoxic effects of Lavandula angustifolia seed extracts on the viability of Huh-7 and Chang liver cells. PLoS One 2022; 17:e0267499. [PMID: 35446915 PMCID: PMC9022791 DOI: 10.1371/journal.pone.0267499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Flowering plants are valuable in numerous ways, including food/feed supply for living organisms, fuel production, and medicinal uses. Several plant extracts/products are used to treat variety of serious ailments in human and animals. Lavandula angustifolia is a flowering plant that possesses anti-inflammatory and anti-depressive medicinal properties. Cancer is a deadly disorder affecting millions of people globally. It affects several human organs, including liver, stomach, and lungs. Several researchers are doing efforts to eliminate the disease around the globe. In this study, Chang and Huh-7 liver cell lines were utilized as human normal hepatocyte model and innovation to mimic the liver environment. Cytotoxicity of L. angustifolia seed extracts was investigated at two different concentrations (50% and 100%) against Chang and Huh-7 liver cell lines by colorimetric assay which is used to assess cell metabolic activities. The Chang and Huh-7 liver cell lines were treated with L. angustifolia seeds extracts (50% and 100%) and incubated for 24 and 48 hours under standard conditions (37°C, 5% CO2). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was employed to quantify cell survival. Seed extracts of L. angustifolia exerted varied cytotoxic effects depending on the concentration and treatment duration. The results indicated that L. angustifolia seed extracts with 100% concentration exhibited the highest cytotoxicity against Huh-7 and Chang liver cell lines. In conclusion, L. angustifolia seed extracts exhibited cytotoxic activity which can be enhanced based on the concentration and treatment duration. The findings of the current study are critical for the development of novel herbal-based therapies for fatal disorders such as liver cancer. However, more investigations are required to reveal cytotoxicity mechanisms of L. angustifolia seed extracts.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
6
|
Mamatha KM, Srinivasa Murthy V, Ravikumar CR, Murthy HCA, Alam MW, Vinutha K, Jahagirdar AA. Lanthanum oxide nanoparticles as chemical sensor for direct detection of carboxymethyl cellulose in eye drops. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2055575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- K. M. Mamatha
- Department of Chemistry, Dayananda Sagar University, Bangalore, India
- Department of Chemistry, Dr. Ambedkar Institute of Technology, Bangalore, India
| | | | - C. R. Ravikumar
- Research Centre, Department of Chemistry, East West Institute of Technology, Bangalore, India
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Hofuf, Al-Hassa, Saudi Arabia
| | - K. Vinutha
- Research Centre, Department of Chemistry, East West Institute of Technology, Bangalore, India
| | - A. A. Jahagirdar
- Department of Chemistry, Dr. Ambedkar Institute of Technology, Bangalore, India
| |
Collapse
|