1
|
Sha Y, Zhang J, Zhuang W, Zhang J, Chen Y, Ge L, Yang P, Zou F, Zhu C, Ying H. Dopamine-assisted surface functionalization of saccharide-responsive fibers for the controlled harvesting and continuous fermentation of Saccharomyces cerevisiae. Colloids Surf B Biointerfaces 2024; 245:114248. [PMID: 39293291 DOI: 10.1016/j.colsurfb.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Continuous fermentation processes increasingly emphasized cell recycling, utilization, and renewal. In this study, to improve the sustainability of the immobilized Saccharomyces cerevisiae, the cells were recovered on the surface of the glucose-responsive supports through manipulating the competitive interactions of phenylboric acid groups between glycoproteins on the cells and glucose. Through a dopamine (DA)-assisted deposition approach, 3-acrylamidophenylboronic acid (APBA) was integrated to design the saccharide-sensitive cotton fibers (APBA@PDA-CF). The optimal co-deposition time (5 h) and ratio (1:1) resulted in an impressive immobilization efficiency of 69.64%. Meanwhile, 93.23% of Saccharomyces cerevisiae was captured and harvested on the surface of APBA@PDA-CF with the fermentation course through regulating the competitive interactions of phenylboric acid groups between glycoproteins on the cells and glucose regardless of pH. Notably, a strong interaction between the yeast cells and APBA@PDA-CF was observed at a low glucose concentration (0.1~2 g/L), with reduced sensitivity at high glucose concentrations (>5 g/L). Moreover, the ethanol production and yield could be increased to 25.37 g/L and 42.4% in the fifth-batch fermentation, respectively. Therefore, based on the feasible and versatile co-deposition method, this study not only broadened the application scope of APBA, but also explored the broad prospects of smart materials in cell immobilization, recovery and continuous fermentation.
Collapse
Affiliation(s)
- Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| | - Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
2
|
Dong H, Xu Y, Zhang Q, Li H, Chen L. Activity and safety evaluation of natural preservatives. Food Res Int 2024; 190:114548. [PMID: 38945593 DOI: 10.1016/j.foodres.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Synthetic preservatives are widely used in the food industry to control spoilage and growth of pathogenic microorganisms, inhibit lipid oxidation processes and extend the shelf life of food. However, synthetic preservatives have some side effects that can lead to poisoning, cancer and other degenerative diseases. With the improvement of living standards, people are developing safer natural preservatives to replace synthetic preservatives, including plant derived preservatives (polyphenols, essential oils, flavonoids), animal derived preservatives (lysozyme, antimicrobial peptide, chitosan) and microorganism derived preservatives (nisin, natamycin, ε-polylysine, phage). These natural preservatives exert antibacterial effects by disrupting microbial cell wall/membrane structures, interfering with DNA/RNA replication and transcription, and affecting protein synthesis and metabolism. This review summarizes the natural bioactive compounds (polyphenols, flavonoids and terpenoids, etc.) in these preservatives, their antioxidant and antibacterial activities, and safety evaluation in various products.
Collapse
Affiliation(s)
- Huiying Dong
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Xu C, Wang A, Li D, Zhang H, Li H, Li Z. Global trends in research of venous thromboembolism associated with lower limb joint arthroplasty: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38661. [PMID: 38905398 PMCID: PMC11191924 DOI: 10.1097/md.0000000000038661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
This study aims to visualize publications related to venous thromboembolism (VTE) and lower limb joint arthroplasty to identify research frontiers and hotspots, providing references and guidance for further research. We retrieved original articles published from 1985 to 2022 and their recorded information from the Web of Science Core Collection. The search strategy used terms related to knee or hip arthroplasty and thromboembolic events. Microsoft Excel was used to analyze the annual publications and citations of the included literature. The rest of the data were analyzed using the VOSviewer, citespace and R and produced visualizations of these collaborative networks. We retrieved 3543 original articles and the results showed an overall upward trend in annual publications. The United States of America had the most significant number of publications (Np) and collaborative links with other countries. McMaster University had the greatest Np. Papers published by Geerts WH in 2008 had the highest total link strength. Journal of Arthroplasty published the most articles on the research of VTE associated with lower limb joint arthroplasty. The latest research trend mainly involved "general anesthesia" "revision" and "tranexamic acid." This bibliometric study revealed that the research on VTE after lower limb joint arthroplasty is developing rapidly. The United States of America leads in terms of both quantity and quality of publications, while European and Canadian institutions and authors also make significant contributions. Recent research focused on the use of tranexamic acid, anesthesia selection, and the VTE risk in revision surgeries.
Collapse
Affiliation(s)
- Chunlei Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Anning Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Dong Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
You X, Wang Z, Wang L, Liu Y, Chen H, Lan X, Guo L. Graphene oxide/ε-poly-L-lysine self-assembled functionalized coatings improve the biocompatibility and antibacterial properties of titanium implants. Front Bioeng Biotechnol 2024; 12:1381685. [PMID: 38638320 PMCID: PMC11024266 DOI: 10.3389/fbioe.2024.1381685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The construction of an antibacterial biological coating on titanium surface plays an important role in the long-term stability of oral implant restoration. Graphene oxide (GO) has been widely studied because of its excellent antibacterial properties and osteogenic activity. However, striking a balance between its biological toxicity and antibacterial properties remains a significant challenge with GO. ε-poly-L-lysine (PLL) has broad-spectrum antibacterial activity and ultra-high safety performance. Using Layer-by-layer self-assembly technology (LBL), different layers of PLL/GO coatings and GO self-assembly coatings were assembled on the surface of titanium sheet. The materials were characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle test. The antibacterial properties of Porphyromonas gingivalis (P.g.) were analyzed through SEM, coated plate experiment, and inhibition zone experiment. CCK-8 was used to determine the cytotoxicity of the material to MC3T3 cells, and zebrafish larvae and embryos were used to determine the developmental toxicity and inflammatory effects of the material. The results show that the combined assembly of 20 layers of GO and PLL exhibits good antibacterial properties and no biological toxicity, suggesting a potential application for a titanium-based implant modification scheme.
Collapse
Affiliation(s)
- Xiaoxiao You
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
- The Public Platform of Zebrafish Technology, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Zhongke Wang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Li Wang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Youbo Liu
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Hongmei Chen
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| | - Ling Guo
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China
| |
Collapse
|
5
|
Zu X, Han Y, Zhou W, Huangfu C, Zhang M, Han Y. [Research progress of antibacterial hydrogel in treatment of infected wounds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:249-255. [PMID: 38385240 PMCID: PMC10882238 DOI: 10.7507/1002-1892.202311003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To review the research progress of new antibacterial hydrogels in the treatment of infected wounds in the field of biomedicine, in order to provide new methods and ideas for clinical treatment of infected wounds. Methods The research literature on antibacterial hydrogels at home and abroad was extensively reviewed in recent years, and the antibacterial hydrogels for the treatment of infected wounds were classified and summarized. Results Antibacterial hydrogels can be divided into three categories: inherent antibacterial hydrogels, antibacterial agent release hydrogels, and environmental response antibacterial hydrogels. The advantages and disadvantages of antibacterial materials, antibacterial mechanism, antibacterial ability, and biocompatibility were discussed respectively. Inherent antibacterial hydrogels have the characteristics of wide source, low cost, and simple preparation, but their antibacterial ability is relatively weak. New antimicrobial substances are added to antibacterial agent release hydrogels, such as antimicrobial peptides, metal ions, graphene materials, etc., providing a new therapeutic strategy for alternative antibiotic therapy. On the basis of the antibacterial material, environmental promoting factors such as photothermal effect, pH value, and magnetic force are added to the environmental response antibacterial hydrogels, which synergically enhances the antibacterial ability of the hydrogel, improves the precise regulation function and bionic effect of the hydrogel. Conclusion The selection of a variety of materials, the addition of a variety of antibacterial agents, and the effect of various promoting factors make composite hydrogels show multiple characteristics. The development of antibacterial hydrogels that can effectively address practical clinical applications remains a significant challenge. In the future, expanding the application range of antibacterial hydrogels, constructing drug-loaded hydrogels, and developing intelligent hydrogels are still new areas that need to be explored and studied.
Collapse
Affiliation(s)
- Xiaoran Zu
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100039, P. R. China
- Chinese PLA Medical College, Beijing, 100039, P. R. China
| | - Yudi Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100039, P. R. China
| | - Wei Zhou
- Institute of Military Medical Sciences, Academy of Military Science, Beijing, 100850, P. R. China
| | - Chaoji Huangfu
- Institute of Military Medical Sciences, Academy of Military Science, Beijing, 100850, P. R. China
| | - Ming Zhang
- Chinese PLA Medical College, Beijing, 100039, P. R. China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100039, P. R. China
- Chinese PLA Medical College, Beijing, 100039, P. R. China
| |
Collapse
|
6
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Hu C, Ji H, Gong Y, Yang X, Jia Y, Liu Y, Ji G, Wang X, Wang M. Wet-adhesive γ-PGA/ε-PLL hydrogel loaded with EGF for tracheal epithelial injury repair. J Mater Chem B 2023; 11:8666-8678. [PMID: 37622289 DOI: 10.1039/d3tb01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Following the global COVID-19 pandemic, the incidence of tracheal epithelial injury is increasing. However, the repair of tracheal epithelial injury remains a challenge due to the slow renewal rate of tracheal epithelial cells (TECs). In traditional nebulized inhalation treatments, drugs are enriched in the lungs or absorbed into the blood, reducing drug concentration at the tracheal injury site. In this study, we prepared an epidermal growth factor (EGF)-loaded gamma-polyglutamic acid (γ-PGA)/epsilon-poly-L-lysine (ε-PLL) (PP) hydrogel (EGF@PP) to promote the repair of tracheal epithelial injury. Epidermal growth factor promotes the proliferation of TECs and enhances vascularization, thereby accelerating injury repair. The PP hydrogel exhibits outstanding wet adhesion, slow drug release, and antibacterial and anti-inflammatory properties, making it suitable for application in the airways and creating an environment conducive to epithelial repair. Here, we established a rabbit model of tracheal injury using a laser to destroy the tracheal epithelium and delivered EGF@PP powder to the injury site under fiberoptic bronchoscopy guidance. Our findings revealed that this was an effective therapeutic strategy for accelerating the repair of tracheal epithelial injury.
Collapse
Affiliation(s)
- Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Yunxuan Jia
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
8
|
Fan W, Han H, Lu Z, Huang Y, Zhang Y, Chen Y, Zhang X, Ji J, Yao K. ε-poly-L-lysine-modified polydopamine nanoparticles for targeted photothermal therapy of drug-resistant bacterial keratitis. Bioeng Transl Med 2023; 8:e10380. [PMID: 36684079 PMCID: PMC9842021 DOI: 10.1002/btm2.10380] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023] Open
Abstract
Bacterial keratitis can lead to intraocular infection and even blindness without prompt and potent treatments. Currently, clinical abuse of antibiotics encouraged the evolution of resistant bacteria. Conventional antibiotic eye drops based keratitis treatment has been heavily restricted due to the lack of bactericidal efficiency and easy induction of bacterial resistance. Hence, developing an effective treatment strategy for bacterial keratitis is of great significance. In this work, we investigated ε-poly-l-lysine (EPL)-modified polydopamine (PDA) nanoparticles (EPL@PDA NPs)-mediated antibacterial photothermal therapy (aPTT), to cope with methicillin-resistant Staphylococcus aureus (MRSA)-induced keratitis. The surface modification of cationic peptide EPL enables EPL@PDA NPs to specifically target negatively charged MRSA and induces local hyperthermia to kill the bacteria under low ambient temperature. Under near-infrared (NIR) irradiation, the sterilization efficiency of EPL@PDA NPs suspension for MRSA in vitro was up to 99.96%. The EPL@PDA-mediated aPTT presented potent antibacterial efficacy in treating MRSA-induced keratitis with little corneal epithelial cytotoxicity and good biocompatibility. In conclusion, the bacterial-targeting aPTT platform in this work provides a prospective method for the management of MRSA-induced refractory bacterial keratitis.
Collapse
Affiliation(s)
- Wenjie Fan
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Zhouyu Lu
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Yin Zhang
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Yaoyao Chen
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Xiaobo Zhang
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouPeople's Republic of China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| |
Collapse
|
9
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|