1
|
Li S, Feng S, Chen Y, Sun B, Zhang N, Zhao Y, Han J, Liu Z, He YQ, Wang Q. Ciclopirox platinum(IV) conjugates suppress tumors by promoting mitophagy and provoking immune responses. J Inorg Biochem 2024; 260:112696. [PMID: 39142055 DOI: 10.1016/j.jinorgbio.2024.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Mitophagy is an important target for antitumor drugs development. A series of ciclopirox (CPX) platinum(IV) hybrids targeting PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitophagy were designed and prepared as antitumor agents. The dual CPX platinum(IV) complex with cisplatin core was screened out as a candidate, which displayed promising antitumor activities both in vitro and in vivo. Mechanistically, it caused serious DNA damage in tumor cells. Then, remarkable mitochondrial damage was induced accompanied by the mitochondrial membrane depolarization and reactive oxygen species generation, which further promoted apoptosis through the Bcl-2/Bax/Caspase3 pathway. Furthermore, mitophagy was ignited via the PINK1/Parkin/P62/LC3 axis, and exhibited positive influence on promoting the apoptosis of tumor cells. The antitumor immunity was boosted by the block of immune check point programmed cell death ligand-1 (PD-L1), which further increased the density of T cells in tumors. Subsequently, the metastasis of tumor cells was inhibited by inhibiting angiogenesis in tumors.
Collapse
Affiliation(s)
- Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yan-Qin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
2
|
Zhang M, Chen Y, Feng S, He Y, Liu Z, Zhang N, Wang Q. Transferrin-Modified Carprofen Platinum(IV) Nanoparticles as Antimetastasis Agents with Tumor Targeting, Inflammation Inhibition, Epithelial-Mesenchymal Transition Suppression, and Immune Activation Properties. J Med Chem 2024; 67:16416-16434. [PMID: 39235464 DOI: 10.1021/acs.jmedchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/β-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
3
|
Chen Y, Zhang M, He Y, Li S, Feng S, Liu Z, Zhang N, Liu M, Wang Q. Canadine Platinum(IV) Complexes Targeting Epithelial-Mesenchymal Transition as Antiproliferative and Antimetastatic Agents. J Med Chem 2024. [PMID: 39069665 DOI: 10.1021/acs.jmedchem.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process for cancer progression, which is crucial in inhibiting the immunity in tumors and further boosting tumor metastasis. The suppression of EMT represents a promising strategy for inhibiting metastatic tumors. Herein, a series of new canadine platinum(IV) conjugates with potent antiproliferative and antimetastatic activities were developed, which activated by suppressing EMT and provoking immune response in tumors besides causing DNA injury. The complexes could covalently conjugate to DNA and induce mitochondria-mediated apoptosis via Bcl-2/Bax/caspase3 signaling. The EMT process was remarkably inhibited by suppressing the Wnt/β-catenin pathway, reversing the inflammatory tumor microenvironment, and inhibiting the HIF-1α pathway, which further resulted in the inhibited angiogenesis in tumors. Moreover, the antitumor immunity was elevated by blocking immune checkpoints PD-L1 and CD47 accompanied by the improvement of CD3+ and CD8+ T lymphocytes and the macrophage polarization from M2- toward M1-type simultaneously in tumors.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| |
Collapse
|
4
|
Gallo E, Diaferia C, Smaldone G, Rosa E, Pecoraro G, Morelli G, Accardo A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci Rep 2024; 14:9940. [PMID: 38688930 PMCID: PMC11061151 DOI: 10.1038/s41598-024-60145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Dexamethasone (DEX) is a synthetic analogue of cortisol commonly used for the treatment of different pathological conditions, comprising cancer, ocular disorders, and COVID-19 infection. Its clinical use is hampered by the low solubility and severe side effects due to its systemic administration. The capability of peptide-based nanosystems, like hydrogels (HGs) and nanogels (NGs), to serve as vehicles for the passive targeting of active pharmaceutical ingredients and the selective internalization into leukemic cells has here been demonstrated. Peptide based HGs loaded with DEX were formulated via the "solvent-switch" method, using Fmoc-FF homopeptide as building block. Due to the tight interaction of the drug with the peptidic matrix, a significant stiffening of the gel (G' = 67.9 kPa) was observed. The corresponding injectable NGs, obtained from the sub-micronization of the HG, in the presence of two stabilizing agents (SPAN®60 and TWEEN®60, 48/52 w/w), were found to be stable up to 90 days, with a mean diameter of 105 nm. NGs do not exhibit hemolytic effects on human serum, moreover they are selectively internalized by RS4;11 leukemic cells over healthy PBMCs, paving the way for the generation of new diagnostic strategies targeting onco-hematological diseases.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Elisabetta Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
5
|
Zhang M, Chen Y, Liu Z, Liu M, Wang Q. Series of Desloratadine Platinum(IV) Hybrids Displaying Potent Antimetastatic Competence by Inhibiting Epithelial-Mesenchymal Transition and Arousing Immune Response. J Med Chem 2024; 67:2031-2048. [PMID: 38232132 DOI: 10.1021/acs.jmedchem.3c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metastasis is the major obstacle to the survival of cancer patients. Herein, a series of new desloratadine platinum(IV) conjugates with promising antiproliferative and antimetastatic activities were developed and evaluated. The candidate complex caused significant DNA damage and stimulated mitochondrial apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it suppressed the epithelial-mesenchymal transition (EMT) process in tumors effectively through NMT-1/HPCAL1 and β-catenin signaling. Subsequently, the angiogenesis was inhibited with the downregulation of key proteins HIF-1α, VEGFA, MMP-9, and CD34. Moreover, the antitumor immunity was effectively aroused by the synergism of EMT reversion and decrease of the histamine level; then, the macrophage polarization from M2- to M1-type and the increase of CD4+ and CD8+ T cells were triggered simultaneously in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
6
|
Li R, Zhao W, Jin C, Xiong H. Dual-target platinum(IV) complexes reverse cisplatin resistance in triple negative breast via inhibiting poly(ADP-ribose) polymerase (PARP-1) and enhancing DNA damage. Bioorg Chem 2023; 133:106354. [PMID: 36720184 DOI: 10.1016/j.bioorg.2023.106354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023]
Abstract
Platinum(II)-based drugs play an important role in many chemotherapeutic protocols, but their further clinical applications are hindered by the development of drug resistance and serious side effects. Therefore, to reverse cisplatin (CDDP) resistance in tandem with reduced side effects, nine novel platinum(IV) complexes modified with key pharmacophore of Olaparib were synthesized and evaluated for biological activities. Among them, the optimal complex 8-2 showed good inhibitory activity against PARP-1 and superior anticancer effects over CDDP on parental (MDA-MB-231, IC50 = 1.13 μM) and CDDP -resistant triple-negative breast cancer (TNBC) cell line (MDA-MB-231/CDDP, IC50 = 1.72 μM). Detailed mechanisms revealed that compared with Olaparib and CDDP, the enhanced intracellular accumulation of 8-2 could efficiently reverse CDDP resistance in MDA-MB-231/CDDP cells via inhibiting DNA repair-associated mechanisms, enhancing DNA damage, and activating mitochondrion-dependent apoptosis pathway. Furthermore, 8-2 obtained higher tumor growth inhibition rate (64.1 %) than CDDP (26.5 %) in MDA-MB-231/CDDP xenografts, but it did not induce significant toxicity in vivo and in intro, making it a potential drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Liu J, Cao Y, Hu B, Li T, Zhang W, Zhang Z, Gao J, Niu H, Ding T, Wu J, Chen Y, Zhang P, Ma R, Su S, Wang C, Wang PG, Ma J, Xie S. Older but Stronger: Development of Platinum-Based Antitumor Agents and Research Advances in Tumor Immunity. INORGANICS 2023. [DOI: 10.3390/inorganics11040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Platinum (Pt) drugs have developed rapidly in clinical applications because of their broad and highly effective antitumor effects. In recent years, with the rapid development of immunotherapy, Pt-based antitumor agents have gained new challenges and opportunities. Since the discovery of their pharmacological effects in immunotherapy and tumor microenvironment regulation, research into Pt drugs has progressed to multi-ligand and multi-functional Pt precursors and their own shortcomings have been further highlighted. With the development of antitumor immunotherapy and the rise of combination therapy, the development of Pt-based drugs has started to move in the direction of multi-targeting, nanocarrier modification, immunotherapy and photodynamic therapy. In this paper, we first overview the recent applications of Pt-based drugs in antitumor inorganic chemistry, with a focus on summarizing the application of Pt-based drugs and their precursors in the anticancer immune response. The paper also provides a reasonable outlook on the future development of Pt-based drugs from the chemical and immunological perspectives, relying on the existing content and problems of Pt-based drug development. On the basis of the gathered information, joint multidisciplinary programs on implementing comprehensive immune analyses for the future development of novel anticancer metal compounds should be initiated.
Collapse
|
8
|
Yao H, Zhu G. Blood Components as Carriers for Small-Molecule Platinum Anticancer Drugs. ChemMedChem 2022; 17:e202200482. [PMID: 36178204 DOI: 10.1002/cmdc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Indexed: 02/01/2023]
Abstract
The efficacy of platinum drugs is limited by severe side effects, drug resistance, and poor pharmacokinetic properties. Utilizing long-lasting blood components as drug carriers is a promising strategy to improve the circulation half-lives and tumor accumulation of platinum drugs. Non-immunogenic blood cells such as erythrocytes and blood proteins such as albumins, which have long lifespans, are suitable for the delivery of platinum drugs. In this concept, we briefly summarize the strategies of applying blood components as promising carriers to deliver small-molecule platinum drugs for cancer treatment. Examples of platinum drugs that are encapsulated, non-covalently attached, and covalently bound to erythrocytes and plasma proteins such as albumin and apoferritin are introduced. The potential methods to increase the stability of platinum-based thiol-maleimide conjugates involved in these delivery systems are also discussed. This concept may enlighten researchers with more ideas on the future development of novel platinum drugs that have excellent pharmacokinetic properties and antitumor performance in vivo.
Collapse
Affiliation(s)
- Houzong Yao
- School of Health, Jiangxi Normal University, Nanchang, 330022, P. R. China.,Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
9
|
Li P, Guo X, Liu T, Liu Q, Yang J, Liu G. Evaluation of Hepatoprotective Effects of Piperlongumine Derivative PL 1-3-Loaded Albumin Nanoparticles on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Mice. Mol Pharm 2022; 19:4576-4587. [PMID: 35971845 DOI: 10.1021/acs.molpharmaceut.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, piperlongumine (PL) having specific cytotoxicity has attracted considerable attention for anticancer activity. Through structural modification, the active derivative PL 1-3 shows potential anti-inflammatory activity and low cytotoxicity, but its water solubility is low. Here, PL 1-3-loaded bovine serum albumin nanoparticles (1-3 NPs) were prepared and characterized, which can improve the dissolution. 1-3 NPs exhibited effective hepatoprotective effects on lipopolysaccharide/d-galactosamine-induced acute liver injury of mice, which was similar to liver injury in clinical settings. 1-3 NPs treatment can inhibit inflammation, oxidative stress, and apoptosis via the downregulation of NF-κB signaling pathways, the activation of Nrf2/HO-1 signaling pathways, and the inhibition of expression of Bax and caspase 3 proteins. The above results demonstrated that PL 1-3-loaded bovine serum albumin nanoparticles possessed potential value in intervention of inflammation-based liver injury.
Collapse
Affiliation(s)
- Pengxiao Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiaoyuan Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Qing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
10
|
Mu W, Wang Q, Jia M, Dong S, Li S, Yang J, Liu G. Hepatoprotective Effects of Albumin-Encapsulated Nanoparticles of a Curcumin Derivative COP-22 against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice. Int J Mol Sci 2022; 23:ijms23094903. [PMID: 35563293 PMCID: PMC9102161 DOI: 10.3390/ijms23094903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI) is a severe syndrome and can further develop into acute liver failure (ALF) which can lead to high mortality and cause irreversible liver injuries in the clinic. Liver transplantation is the most common treatment; however, liver donors are lacking, and the progression of ALF is rapid. Nanoparticles can increase the bioavailability and the targeted accumulation of drugs in the liver, so as to significantly improve the therapeutic effect of ALI. Curcumin derivative COP-22 exhibits low cytotoxicity and effective anti-inflammatory activity; however, it has poor water solubility. In this study, COP-22-loaded bovine serum albumin (BSA) nanoparticles (22 NPs) were prepared and characterized. They exhibit effective hepatoprotective effects by inhibiting inflammation, oxidative stress, and apoptosis on Lipopolysaccharide/D-Galactosamine-induced acute liver injury of mice. The anti-inflammatory activity of 22 NPs is related to the regulation of the NF-κB signaling pathways; the antioxidant activity is related to the regulation of the Nrf2 signaling pathways; and the apoptosis activity is related to mitochondrial pathways, involving Bcl-2 family and Caspase-3 protein. These three cellular pathways are interrelated and affected each other. Moreover, 22 NPs could be passively targeted to accumulate in the liver through the retention effect and are more easily absorbed than 22.HCl salt in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yang
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| | - Guoyun Liu
- Correspondence: (J.Y.); (G.L.); Tel.: +86-15063505132 (L.G.)
| |
Collapse
|
11
|
Synthesis and biological activity of amide derivatives derived from natural product Waltherione F. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Li Z, Li L, Zhao W, Sun B, Liu Z, Liu M, Han J, Wang Z, Li D, Wang QP. Development of a series of flurbiprofen and zaltoprofen platinum(IV) complexes with anti-metastasis competence targeting COX-2, PD-L1 and DNA. Dalton Trans 2022; 51:12604-12619. [DOI: 10.1039/d2dt00944g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop new anti-metastasis chemotherapeutic drugs, a series of flurbiprofen (FLP) and zaltoprofen (ZTP) platinum(IV) complexes targeting COX-2, PD-L1 and DNA were prepared and investigated. Complex 2 with dual FLP...
Collapse
|
13
|
Interactions of Analgesics with Cisplatin: Modulation of Anticancer Efficacy and Potential Organ Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010046. [PMID: 35056355 PMCID: PMC8781901 DOI: 10.3390/medicina58010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness, CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy, including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral nerves causing severely painful neuropathy. The latter, among other pains patients feel during chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic analgesics, could be used according to the severity of pain. Administered analgesics might modulate CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand, some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP, augmenting its potentially hazardous effects on organ impairment. This article offers an overview of the reported literature on the interactions between analgesics and CDDP, paying special attention to possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.
Collapse
|