1
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
2
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Yokel RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1767. [PMID: 34957707 DOI: 10.1002/wnan.1767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
This advanced review describes the anatomical and physiological barriers and mechanisms impacting nanomedicine translocation from the nasal cavity directly to the brain. There are significant physiological and anatomical differences in the nasal cavity, olfactory area, and airflow reaching the olfactory epithelium between humans and experimentally studied species that should be considered when extrapolating experimental results to humans. Mucus, transporters, and tight junction proteins present barriers to material translocation across the olfactory epithelium. Uptake of nanoparticles through the olfactory mucosa and translocation to the brain can be intracellular via cranial nerves (intraneuronal) or other cells of the olfactory epithelium, or extracellular along cranial nerve pathways (perineural) and surrounding blood vessels (perivascular, the glymphatic system). Transport rates vary greatly among the nose to brain pathways. Nanomedicine physicochemical properties (size, surface charge, surface coating, and particle stability) can affect uptake efficiency, which is usually less than 5%. Incorporation of therapeutic agents in nanoparticles has been shown to produce pharmacokinetic and pharmacodynamic benefits. Assessment of adverse effects has included olfactory mucosa toxicity, ciliotoxicity, and olfactory bulb and brain neurotoxicity. The results have generally suggested the investigated nanomedicines do not present significant toxicity. Research needs to advance the understanding of nanomedicine translocation and its drug cargo after intranasal administration is presented. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Yokel RA. Nanoparticle brain delivery: a guide to verification methods. Nanomedicine (Lond) 2020; 15:409-432. [DOI: 10.2217/nnm-2019-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many reports conclude nanoparticle (NP) brain entry based on bulk brain analysis. Bulk brain includes blood, cerebrospinal fluid and blood vessels within the brain contributing to the blood–brain and blood–cerebrospinal fluid barriers. Considering the brain as neurons, glia and their extracellular space (brain parenchyma), most studies did not show brain parenchymal NP entry. Blood–brain and blood–cerebrospinal fluid barriers anatomy and function are reviewed. Methods demonstrating brain parenchymal NP entry are presented. Results demonstrating bulk brain versus brain parenchymal entry are classified. Studies are reviewed, critiqued and classified to illustrate results demonstrating bulk brain versus parenchymal entry. Brain, blood and peripheral organ NP timecourses are compared and related to brain parenchymal entry evidence suggesting brain NP timecourse informs about brain parenchymal entry.
Collapse
Affiliation(s)
- Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
5
|
Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, Chen J, Dings RP, Griffin RJ. Enhanced Photothermal Treatment Efficacy and Normal Tissue Protection via Vascular Targeted Gold Nanocages. Nanotheranostics 2019; 3:145-155. [PMID: 31008023 PMCID: PMC6470343 DOI: 10.7150/ntno.32395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
A major challenge in photothermal treatment is generating sufficient heat to eradicate diseased tissue while sparing normal tissue. Au nanomaterials have shown promise as a means to achieve highly localized photothermal treatment. Toward that end, the synthetic peptide anginex was conjugated to Au nanocages. Anginex binds to galectin-1, which is highly expressed in dividing endothelial cells found primarily in the tumor vasculature. The skin surface temperature during a 10 min laser exposure of subcutaneous murine breast tumors did not exceed 43°C and no normal tissue damage was observed, yet a significant anti-tumor effect was observed when laser was applied 24 h post-injection of targeted nanocages. Untargeted particles showed little effect in immunocompetent, tumor-bearing mice under these conditions. Photoacoustic, photothermal, and ICP-MS mapping of harvested tissue showed distribution of particles near the vasculature throughout the tumor. This uptake pattern within the tumor combined with a minimal overall temperature rise were nonetheless sufficient to induce marked photothermal efficacy and evidence of tumor control. Importantly, this evidence suggests that bulk tumor temperature during treatment does not correlate with treatment outcome, which implies that targeted nanomedicine can be highly effective when closely bound/distributed in and around the tumor endothelium and extensive amounts of direct tumor cell binding may not be a prerequisite of effective photothermal approaches.
Collapse
Affiliation(s)
- Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR,✉ Corresponding author: Dr. Samir V. Jenkins, , Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham, Mail Slot #771, Little Rock, AR 72205, USA
| | - Dmitry A. Nedosekin
- Department of Otolaryngology and Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Barry J. Shaulis
- Trace Element and Radiogenic Isotope Lab, University of Arkansas, Fayetteville, AR
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Erik D. Pollock
- Trace Element and Radiogenic Isotope Lab, University of Arkansas, Fayetteville, AR
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR
| | - Ruud P.M. Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
6
|
Methods to Quantify Nanomaterial Association with, and Distribution Across, the Blood-Brain Barrier In Vivo. Methods Mol Biol 2019; 1894:281-299. [PMID: 30547467 DOI: 10.1007/978-1-4939-8916-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role and functional anatomy of the blood-brain barrier (BBB) is summarized to enable the investigator to appropriately address evaluation of nanomaterial interaction with, and distribution across, it into brain tissue (parenchyma). Transport mechanisms across the BBB are presented, in relation to nanomaterial physicochemical properties. Measures and test substances to assess BBB integrity/disruption/permeation are introduced, along with how they are used to interpret the results obtained with the presented methods. Experimental pitfalls and misinterpretation of results of studies of brain nanomaterial uptake are briefly summarized, that can be avoided with the methods presented in this chapter. Two methods are presented. The in situ brain perfusion technique is used to determine rate and extent of nanomaterial distribution into the brain. The capillary depletion method separates brain parenchymal tissue from the endothelial cells that contribute to the BBB. It is used to verify nanomaterial brain tissue entry. These methods are best used together, the latter refining the results obtained with the former. Details of the materials and equipment needed to conduct these methods, and description of the procedures and data interpretation, are provided.
Collapse
|
7
|
Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles - A Review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 17:1-5. [PMID: 29234605 PMCID: PMC5723353 DOI: 10.1016/j.btre.2017.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/21/2022]
Abstract
A cerium oxide nanoparticles (nanoceria) has a wide range of applications in different fields, especially biomedical division. As a matter of concern, it has a major impact on the human health and environment. The aim of this review is to address the different ways of synthesis of nanoceria using chemical and green synthesis methods and characterization and the applications of nanoceria for antioxidant, anticancer, antibacterial activities and toxicological studies including the most recent studies carried out in vivo and in vitro to study the problems. We have exclusively discussed on the toxicology of nanoceria exposed to the general public along with recent advances in the studies of antimicrobial, toxicity and anti-oxidant activity.
Collapse
Affiliation(s)
- S. Rajeshkumar
- Nano-Therapy Lab, School of Bio-Sciences and Technology, VIT University, Vellore, 632014, TN, India
| | | |
Collapse
|
8
|
Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018; 38:1003-1024. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.
Collapse
Affiliation(s)
- Bing-Huei Chen
- a Department of Food Science , Fu Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Medicine , Fu Jen Catholic University , New Taipei City , Taiwan
| | | |
Collapse
|
9
|
Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H, Kock H, Tentschert J, Tlili A, Schäffer A, Sips AJAM, Yokel RA, Luch A. Biokinetics of Nanomaterials: the Role of Biopersistence. NANOIMPACT 2017; 6:69-80. [PMID: 29057373 PMCID: PMC5645051 DOI: 10.1016/j.impact.2017.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Collapse
Affiliation(s)
- Peter Laux
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andy M Booth
- SINTEF Materials and Chemistry, Trondheim N-7465, Norway
| | - Joseph D Brain
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Josephine Brunner
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics & Biophysics, Leipzig University, Härtelstraße 16, 04107 Leipzig, Germany
| | - Thomas Gebel
- German Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, 44149 Dortmund, Germany
| | - Gunnar Johanson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ahmed Tlili
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Adriënne J A M Sips
- National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
10
|
Naz S, Beach J, Heckert B, Tummala T, Pashchenko O, Banerjee T, Santra S. Cerium oxide nanoparticles: a ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine (Lond) 2017; 12:545-553. [DOI: 10.2217/nnm-2016-0399] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite advances in understanding the factors that cause many neurodegenerative diseases (NDs), no current therapies have yielded significant results. Cerium oxide nanoparticles (CeONPs) have recently emerged as therapeutics for the treatment of NDs due to their antioxidant properties. This report summarizes the recent findings regarding CeONPs in treatment of various NDs, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke and amyotrophic lateral sclerosis. Interest in CeONPs as a potential nanomedicine for NDs has increased due to: their ability to alter signaling pathways, small diameter allowing passage through the blood–brain barrier and scavenging of reactive oxygen species. Due to these properties, CeONPs could eventually revolutionize existing treatments for NDs.
Collapse
Affiliation(s)
- Shuguftha Naz
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - James Beach
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Blaze Heckert
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tanuja Tummala
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Oleksandra Pashchenko
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tuhina Banerjee
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
11
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
12
|
Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants (Basel) 2016; 5:E15. [PMID: 27196936 PMCID: PMC4931536 DOI: 10.3390/antiox5020015] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.
Collapse
Affiliation(s)
- Bryant C Nelson
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Monique E Johnson
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Marlon L Walker
- Material Measurement Laboratory-Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Kathryn R Riley
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Christopher M Sims
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
13
|
Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. ENVIRONMENTAL SCIENCE. NANO 2015; 2:33-53. [PMID: 26207185 PMCID: PMC4508017 DOI: 10.1039/c4en00138a] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cerium oxide nanoparticles (Nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of Nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of Nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of Nanoceria in animal studies? 2) What are the considerations to develop Nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?
Collapse
Affiliation(s)
- Carl Walkey
- Integrated Nanotechnology and Biomedical Sciences Laboratory, Terrence Donnelly Building, University of Toronto, 160 College St., Toronto, ON M5S 3G9, Canada
| | - Soumen Das
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida, Orlando, FL, US
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida, Orlando, FL, US
| | - Joseph Erlichman
- Department of Biology, St. Lawrence University, Johnson Hall of Science, 23 Romoda Drive, Canton, NY 13617
| | - Karin Heckman
- Department of Biology, St. Lawrence University, Johnson Hall of Science, 23 Romoda Drive, Canton, NY 13617
| | - Lina Ghibelli
- Department of Biology, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Enrico Traversa
- King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - James F McGinnis
- Dean A. McGee Eye Institute, Department of Ophthalmology, 608 Stanton L. Young, Blvd., Oklahoma City, OK 73126
| | - William T Self
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida 32816
| |
Collapse
|
14
|
Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR. The Yin: An adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. ENVIRONMENTAL SCIENCE. NANO 2014; 1:406-428. [PMID: 25243070 PMCID: PMC4167411 DOI: 10.1039/c4en00039k] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This critical review evolved from a SNO Special Workshop on Nanoceria panel presentation addressing the toxicological risks of nanoceria: accumulation, target organs, and issues of clearance; how exposure dose/concentration, exposure route, and experimental preparation/model influence the different reported effects of nanoceria; and how can safer by design concepts be applied to nanoceria? It focuses on the most relevant routes of human nanoceria exposure and uptake, disposition, persistence, and resultant adverse effects. The pulmonary, oral, dermal, and topical ocular exposure routes are addressed as well as the intravenous route, as the latter provides a reference for the pharmacokinetic fate of nanoceria once introduced into blood. Nanoceria reaching the blood is primarily distributed to mononuclear phagocytic system organs. Available data suggest nanoceria's distribution is not greatly affected by dose, shape, or dosing schedule. Significant attention has been paid to the inhalation exposure route. Nanoceria distribution from the lung to the rest of the body is less than 1% of the deposited dose, and from the gastrointestinal tract even less. Intracellular nanoceria and organ burdens persist for at least months, suggesting very slow clearance rates. The acute toxicity of nanoceria is very low. However, large/accumulated doses produce granuloma in the lung and liver, and fibrosis in the lung. Toxicity, including genotoxicity, increases with exposure time; the effects disappear slowly, possibly due to nanoceria's biopersistence. Nanoceria may exert toxicity through oxidative stress. Adverse effects seen at sites distal to exposure may be due to nanoceria translocation or released biomolecules. An example is elevated oxidative stress indicators in the brain, in the absence of appreciable brain nanoceria. Nanoceria may change its nature in biological environments and cause changes in biological molecules. Increased toxicity has been related to greater surface Ce3+, which becomes more relevant as particle size decreases and the ratio of surface area to volume increases. Given its biopersistence and resulting increased toxicity with time, there is a risk that long-term exposure to low nanoceria levels may eventually lead to adverse health effects. This critical review provides recommendations for research to resolve some of the many unknowns of nanoceria's fate and adverse effects.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, US ; Graduate Center for Toxicology, University of Kentucky, US
| | - Salik Hussain
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | | | - Vincent Castranova
- National Institute for Occupational Safety and Health, US ; West Virginia University School of Pharmacy, Morgantown, WV, US
| | - Flemming R Cassee
- Centre for Sustainability, Environmental & Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands ; Institute of Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Wang B, Jackson GS, Yokel RA, Grulke EA. Applying accelerator mass spectrometry for low-level detection of complex engineered nanoparticles in biological media. J Pharm Biomed Anal 2014; 97:81-7. [DOI: 10.1016/j.jpba.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
16
|
Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers. Int J Mol Sci 2014; 15:11742-59. [PMID: 24992594 PMCID: PMC4139811 DOI: 10.3390/ijms150711742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/25/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 μm) and two types of titanium oxide particles (80 nm and < 44 μm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations ≥ 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations ≥62.5 μg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.
Collapse
|
17
|
Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond) 2014; 8:1483-508. [PMID: 23987111 DOI: 10.2217/nnm.13.133] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Promising results have been obtained using cerium (Ce) oxide nanoparticles (CNPs) as antioxidants in biological systems. CNPs have unique regenerative properties owing to their low reduction potential and the coexistence of both Ce(3+)/Ce(4+) on their surfaces. Defects in the crystal lattice due to the presence of Ce(3+) play an important role in tuning the redox activity of CNPs. The surface Ce(3+):Ce(4+) ratio is influenced by the microenvironment. Therefore, the microenvironment and synthesis method adopted also plays an important role in determining the biological activity and toxicity of CNPs. The presence of a mixed valance state plays an important role in scavenging reactive oxygen and nitrogen species. CNPs are found to be effective against pathologies associated with chronic oxidative stress and inflammation. CNPs are well tolerated in both in vitro and in vivo biological models, which makes CNPs well suited for applications in nanobiology and regenerative medicine.
Collapse
Affiliation(s)
- Soumen Das
- Advanced Materials Processing Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | |
Collapse
|
18
|
Heckman KL, DeCoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C, Mullen P, Rathbun E, Prime K, Marini J, Patchefsky J, Patchefsky AS, Hailstone RK, Erlichman JS. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS NANO 2013; 7:10582-10596. [PMID: 24266731 DOI: 10.1021/nn403743b] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here, we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease. The CeNPs are 2.9 nm in diameter, monodispersed and have a -23.5 mV zeta potential when stabilized with citrate/EDTA. This stabilizer coating resists being 'washed' off in physiological salt solutions, and the CeNPs remain monodispersed for long durations in high ionic strength saline. The plasma half-life of the CeNPs is ∼4.0 h, far longer than previously described, stabilized ceria nanoparticles. When administered intravenously to mice, the CeNPs were well tolerated and taken up by the liver and spleen much less than previous nanoceria formulations. The CeNPs were also able to penetrate the brain, reduce reactive oxygen species levels, and alleviate clinical symptoms and motor deficits in mice with a murine model of multiple sclerosis. Thus, CeNPs may be useful in mitigating tissue damage arising from free radical accumulation in biological systems.
Collapse
Affiliation(s)
- Karin L Heckman
- Departments of Biology and ‡Psychology, St. Lawrence University , Canton, New York 13617, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yokel R, Grulke E, MacPhail R. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:346-73. [PMID: 23568784 DOI: 10.1002/wnan.1202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern.
Collapse
Affiliation(s)
- Robert Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
20
|
Biodistribution and biopersistence of ceria engineered nanomaterials: size dependence. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:398-407. [DOI: 10.1016/j.nano.2012.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 12/27/2022]
|
21
|
Hoff D, Sheikh L, Bhattacharya S, Nayar S, Webster TJ. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood-brain barrier. Int J Nanomedicine 2013; 8:703-10. [PMID: 23426527 PMCID: PMC3576039 DOI: 10.2147/ijn.s35614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the present study, the permeability of 11 different iron oxide nanoparticle (IONP) samples (eight fluids and three powders) was determined using an in vitro blood-brain barrier model. Importantly, the results showed that the ferrofluid formulations were statistically more permeable than the IONP powder formulations at the blood-brain barrier, suggesting a role for the presently studied in situ synthesized ferrofluid formulations using poly(vinyl) alcohol, bovine serum albumin, collagen, glutamic acid, graphene, and their combinations as materials which can cross the blood-brain barrier to deliver drugs or have other neurological therapeutic efficacy. Conversely, the results showed the least permeability across the blood-brain barrier for the IONP with collagen formulation, suggesting a role as a magnetic resonance imaging contrast agent but limiting IONP passage across the blood-brain barrier. Further analysis of the data yielded several trends of note, with little correlation between permeability and fluid zeta potential, but a larger correlation between permeability and fluid particle size (with the smaller particle sizes having larger permeability). Such results lay the foundation for simple modification of iron oxide nanoparticle formulations to either promote or inhibit passage across the blood-brain barrier, and deserve further investigation for a wide range of applications.
Collapse
Affiliation(s)
- Dan Hoff
- School of Engineering, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
22
|
Rojas S, Gispert JD, Abad S, Buaki-Sogo M, Victor VM, Garcia H, Herance JR. In Vivo Biodistribution of Amino-Functionalized Ceria Nanoparticles in Rats Using Positron Emission Tomography. Mol Pharm 2012; 9:3543-50. [DOI: 10.1021/mp300382n] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Santiago Rojas
- CRC-Centre d’Imatge Molecular (CRC-CIM), Parc de Recerca Biomèdica
de Barcelona (PRBB), c/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Domingo Gispert
- Institut d’Alta Tecnologia, Parc de Recerca Biomèdica de Barcelona
(IAT-PRBB), c/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sergio Abad
- CRC-Centre d’Imatge Molecular (CRC-CIM), Parc de Recerca Biomèdica
de Barcelona (PRBB), c/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mireia Buaki-Sogo
- Departamento de Química
and Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, 46022 Valencia,
Spain
| | - Victor M. Victor
- Fundacion para la
Investigacion
Sanitaria y Biomedica de la Comunidad Valenciana FISABIO/University Hospital Doctor Peset, Endocrinology Service,
Avda Gaspar Aguilar 90, 46017 Valencia, Spain
- Department of Physiology, Pharmacology
and CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive
Diseases, University of Valencia, Spain
| | - Hermenegildo Garcia
- Departamento de Química
and Instituto Universitario de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, 46022 Valencia,
Spain
| | - Jose Raúl Herance
- CRC-Centre d’Imatge Molecular (CRC-CIM), Parc de Recerca Biomèdica
de Barcelona (PRBB), c/Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|