1
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
2
|
Kumar D, Moghiseh M, Chitcholtan K, Mutreja I, Lowe C, Kaushik A, Butler A, Sykes P, Anderson N, Raja A. LHRH conjugated gold nanoparticles assisted efficient ovarian cancer targeting evaluated via spectral photon-counting CT imaging: a proof-of-concept research. J Mater Chem B 2023; 11:1916-1928. [PMID: 36744575 DOI: 10.1039/d2tb02416k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Emerging multifunctional nanoparticulate formulations take advantage of nano-meter scale size and surface chemistry to work as a therapeutic delivery agent and a diagnostic tool for non-invasive real-time monitoring using imaging technologies. Here, we evaluate the selective uptake of 18 nm and 80 nm sized gold nanoparticles (AuNPs) by SKOV3 (4 times higher) ovarian cancer (OC) cells (compared to OVCAR5) in vitro, quantified by inductively coupled plasma (ICP) and MARS spectral photon-counting CT imaging (MARS SPCCT). Based on in vitro analysis, pristine AuNPs (18 nm) and surface modified AuNPs (18 nm) were chosen as a contrast agent for MARS SPCCT. The chemical analysis by FTIR spectroscopy confirmed the luteinizing hormone-releasing hormone (LHRH) conjugation to the AuNPs surface. For the first time, LHRH conjugated AuNPs were used for in vitro and selective in vivo OC targeting. The ICP-MS analysis confirmed preferential uptake of LHRH modified AuNPs by organs residing in the abdominal cavity with OC nodules (pancreas: 0.46 ng mg-1, mesentery: 0.89 ng mg-1, ovary: 1.43 ng mg-1, and abdominal wall: 2.12 ng mg-1) whereas the MARS SPCCT analysis suggested scattered accumulation of metal around the abdominal cavity. Therefore, the study showed the exciting potential of LHRH conjugated AuNPs to target ovarian cancer and also as a potential contrast agent for novel SPCCT imaging technology.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Division of Pediatrics Dentistry, School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA. .,Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Mahdieh Moghiseh
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, 515 Delaware St SE, Minneapolis, Minnesota, 55455, USA
| | - Chiara Lowe
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Ajeet Kaushik
- NanoBiotech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, FL, 33805, USA
| | - Anthony Butler
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,MARS Bioimaging Limited, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, Christchurch Women Hospital, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Nigel Anderson
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand
| | - Aamir Raja
- Department of Radiology, University of Otago Christchurch, 2 Riccarton Ave, School of Medicine, Christchurch, New Zealand.,Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Wang Y, Li X, Chen H, Gao Y. Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1432-1444. [PMID: 36530516 PMCID: PMC9727275 DOI: 10.3762/bjnano.13.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles with large size exhibit preferable properties for photothermal therapy (PTT). However, the prolonged tissue retention and slow elimination of gold nanoparticles limit their therapeutic applications. Previously, gold nanoclusters carrying lipid nanoparticles (Au-LNPs) have been reported after simply mixing Au3+ with preformed diethylenetriaminepentaacetic acid lipid nanoparticles to solve this contradiction. Au-LNPs demonstrated enhanced photothermal effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for synergistic PTT in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
4
|
Pavitra E, Dariya B, Srivani G, Kang SM, Alam A, Sudhir PR, Kamal MA, Raju GSR, Han YK, Lakkakula BVKS, Nagaraju GP, Huh YS. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 2021; 69:293-306. [PMID: 31260733 DOI: 10.1016/j.semcancer.2019.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.
Collapse
Affiliation(s)
- Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Putty-Reddy Sudhir
- The Center for Translational Biomedical Research, UNCG, Kannapolis, NC-28081, USA
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC) Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Asem H, Zheng W, Nilsson F, Zhang Y, Hedenqvist MS, Hassan M, Malmström E. Functional Nanocarriers for Drug Delivery by Surface Engineering of Polymeric Nanoparticle Post-Polymerization-Induced Self-Assembly. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Heba Asem
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Wenyi Zheng
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm SE-141 86, Sweden
| | - Fritjof Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Polymeric Materials, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yuning Zhang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Mikael S. Hedenqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Polymeric Materials, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Moustapha Hassan
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm SE-141 86, Sweden
- Clinical Research Centrum, Department of Stem Cell Transplantation (CAST), Karolinska University Hospital-Huddinge, Stockholm SE-141 86, Sweden
| | - Eva Malmström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
6
|
Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. Methods for Reducing the Toxicity of Metal and Metal Oxide NPs as Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E279. [PMID: 31936311 PMCID: PMC7013649 DOI: 10.3390/ma13020279] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/10/2023]
Abstract
The rapid development of medicine has forced equally rapid progress in the field of pharmaceuticals. In connection with the expensive and time-consuming process of finding new drugs, great emphasis is put on the design and use of metal and metal oxides nanoparticles in nanomedicine. The main focus is on comprehensive presentation of both physicochemical properties and the possibilities of using, in particular, silver (Ag) and gold (Au) nanoparticles, as well as zinc oxide (ZnO) and titanium oxide (TiO2) nanoparticles as drug carriers and in the treatment of cancer. An important element of this subject is the possibility of occurrence of toxic effects of these nanoparticles. For this reason, possible mechanisms of toxic actions are presented, as well as methods used to reduce their toxicity to ensure the safety of drug carriers based on these nanostructures.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (O.D.); (K.S.); (A.S.); (J.P.-P.)
| |
Collapse
|
7
|
Ranjana R, Parushuram N, Harisha K, Asha S, Sangappa Y. Silk fibroin a bio-template for synthesis of different shaped gold nanoparticles: Characterization and ammonia detection application. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.11.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Singh N, Nayak J, Sahoo SK, Kumar R. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:453-465. [DOI: 10.1016/j.msec.2019.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
9
|
Spectral Photon-Counting Molecular Imaging for Quantification of Monoclonal Antibody-Conjugated Gold Nanoparticles Targeted to Lymphoma and Breast Cancer: An In Vitro Study. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2136840. [PMID: 30662379 PMCID: PMC6312585 DOI: 10.1155/2018/2136840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
The purpose of the present study was to demonstrate an in vitro proof of principle that spectral photon-counting CT can measure gold-labelled specific antibodies targeted to specific cancer cells. A crossover study was performed with Raji lymphoma cancer cells and HER2-positive SKBR3 breast cancer cells using a MARS spectral CT scanner. Raji cells were incubated with monoclonal antibody-labelled gold, rituximab (specific antibody to Raji cells), and trastuzumab (as a control); HER2-positive SKBR3 breast cancer cells were incubated with monoclonal antibody-labelled gold, trastuzumab (specific antibody to HER2-positive cancer cells), and rituximab (as a control). The calibration vials with multiple concentrations of nonfunctionalised gold nanoparticles were used to calibrate spectral CT. Spectral imaging results showed that the Raji cells-rituximab-gold and HER2-positive cells-trastuzumab-gold had a quantifiable amount of gold, 5.97 mg and 0.78 mg, respectively. In contrast, both cell lines incubated with control antibody-labelled gold nanoparticles had less gold attached (1.22 mg and 0.15 mg, respectively). These results demonstrate the proof of principle that spectral molecular CT imaging can identify and quantify specific monoclonal antibody-labelled gold nanoparticles taken up by Raji cells and HER2-positive SKBR3 breast cancer cells. The present study reports the future potential of spectral molecular imaging in detecting tumour heterogeneity so that treatment can be tuned accordingly, leading to more effective personalised medicine.
Collapse
|
10
|
Colorimetric and visual determination of acrylamide via acrylamide-mediated polymerization of acrylamide-functionalized gold nanoparticles. Mikrochim Acta 2018; 185:522. [DOI: 10.1007/s00604-018-3062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
|
11
|
Unraveling the cell-type dependent radiosensitizing effects of gold through the development of a multifunctional gold nanoparticle. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:439-449. [PMID: 29196180 DOI: 10.1016/j.nano.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/18/2023]
Abstract
The radiosensitizing efficacy of gold is well established, however, there remain several significant barriers to the successful clinical translation of nano-sized gold particles (AuNPs). These barriers include: retaining stability in relevant biological sera, demonstrating effectiveness at clinically relevant AuNP concentrations and identifying the biological context where significant benefit is most likely to be achieved. Herein we have developed a AuNP preparation, stress-tested to provide effective protection from salt and serum mediated agglomeration. Furthermore, the core AuNP is co-functionalized with two biologically derived peptides designed to enhance endocytosis and promote endosomal escape, thus maximizing intracellular AuNP surface area. In summary, these investigations demonstrate restored AuNP internalization using the co-functionalized preparation that generated significant radiosensitization, in both in vitro and in vivo models, at clinically viable treatment concentrations. Furthermore, we have identified an underpinning biological mechanism in the inherent radical scavenging capacity that could be used to predict radiosensitizing efficacy.
Collapse
|
12
|
Kumar D, Mutreja I, Chitcholtan K, Sykes P. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells. NANOTECHNOLOGY 2017; 28:475101. [PMID: 29027909 DOI: 10.1088/1361-6528/aa935e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | | | | | | |
Collapse
|
13
|
Safarpoor M, Ghaedi M, Yousefinejad M, Javadian H, Asfaram A, Ghasemi Z, Jaberi H, Rahimi D. Podophyllotoxin extraction fromLinum usitatissimumplant and its anticancer activity against HT‐29, A‐549 and MDA‐MB‐231 cell lines with and without the presence of gold nanoparticles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | | | - Hamedreza Javadian
- Universitat Politècnica de CatalunyaDepartment of Chemical Engineering, ETSEIB Diagonal 647 08028 Barcelona Spain
| | - Arash Asfaram
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
| | - Zahra Ghasemi
- Department of ChemistryYasouj University Yasouj 75918‐74831 Iran
| | - Hajar Jaberi
- Department of BiochemistryShiraz University of Medical Sciences Shiraz 71348‐57794 Iran
| | - Daruosh Rahimi
- Department of BiochemistryShiraz University of Medical Sciences Shiraz 71348‐57794 Iran
| |
Collapse
|
14
|
Foster CK, Thorpe C. Challenges in the evaluation of thiol-reactive inhibitors of human protein disulfide Isomerase. Free Radic Biol Med 2017; 108:741-749. [PMID: 28465261 PMCID: PMC5507595 DOI: 10.1016/j.freeradbiomed.2017.04.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
This paper addresses how to evaluate the efficacy of the growing inventory of thiol-reactive inhibitors of mammalian protein disulfide Isomerase (PDI) enzymes under realistic concentrations of potentially competing thiol-containing peptides and proteins. For this purpose, we introduce a variant of the widely-used reductase assay by using a commercially-available cysteine derivative (BODIPY FL L-Cystine; BD-SS) that yields a 55-fold increase in fluorescence (excitation/emission; 490/513nm) on scission of the disulfide bond. This plate reader-compatible method detects human PDI down to 5-10nM, can utilize a range of thiol substrates (including 5µM dithiothreitol, 10µM reduced RNase thiols, and 5mM glutathione; GSH), and can operate from pH 6-9.5 in a variety of buffers. PDI assays often employ low micromolar levels of substrates leading to ambiguities when thiol-directed inhibitors are evaluated. The present work utilizes 5mM GSH for both pre-incubation and assay phases to more realistically reflect the high concentration of thiols that an inhibitor would encounter intracellularly. Extracellular PDI faces a much lower concentration of potentially competing thiols; to assess reductase activity under these conditions, the pre-reduced PDI is treated with inhibitor and then fluorescence increase upon reduction of BD-SS is followed in the absence of additional competing thiols. Both assay modes were tested with four mechanistically diverse PDI inhibitors. Two reversible reagents, 3,4-methylenedioxy-β-nitrostyrene (MNS) and the arsenical APAO, were found to be strong inhibitors of PDI in the absence of competing thiols, but were ineffective in the presence of 5mM GSH. A further examination of the nitrostyrene showed that MNS not only forms facile Michael adducts with GSH, but also with the thiols of unfolded proteins (Kd values of 7 and <0.1µM, respectively) suggesting the existence of multiple potential intracellular targets for this membrane-permeant reagent. The inhibition of PDI by the irreversible alkylating agent, the chloroacetamide 16F16, was found to be only modestly attenuated by 5mM GSH. Finally, the thiol-independent flavonoid inhibitor quercetin-3-O-rutinoside was found to show equal efficacy in reoxidation and turnover assay types. This work provides a framework to evaluate inhibitors that may target the CxxC motifs of PDI and addresses some of the complexities in the interpretation of the behavior of thiol-directed reagents in vivo.
Collapse
Affiliation(s)
- Celia K Foster
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
15
|
Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater 2017; 47:182-192. [PMID: 27721007 DOI: 10.1016/j.actbio.2016.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
CD133 is known as biomarker for glioblastoma (GBM) and also serves as a marker for cancer stem cells (CSCs), which carry out tumorigenesis and resist conventional therapeutics. The presence of CD133-presenting CSC is a one of the factors in maintenance of the tumorigenic potential of GBM. Thus, CD133 is a potential target for accurate diagnosis of GBM, which could improve its poor prognosis for patients when CSCs are present. Herein we designed a small peptide-based imaging agent with stimulus-responsive properties. A novel small peptide, CBP4, was screened by a phage display technique, and demonstrated binding to the target CD133 (ECD) comparable to that of an antibody. As a quencher, we used gold nanoparticles (GNPs); the targeting peptide was conjugated to GNPs with high efficiency. By means of a quenching effect, the peptide-coated GNP showed 'signal on-off' properties depending upon the presence of the target. In addition, the particles exhibited biocompatibility when localized in the cytosol. Thus, this study demonstrated that the peptide-coated GNPs can be utilized as an imaging agent for accurate diagnosis of GBM, and further as a drug carrier for therapeutic approaches. STATEMENT OF SIGNIFICANCE The diagnosis and determination of prognosis made by cancer stem cell markers could be a key strategy to eradicate cancer stem cells and cure the cancer. The significance of this study is the characterization of quenching-based signal on-off mechanism and showed that the active targeting via peptide can contribute to the design of a stimulus-responsive cellular imaging agent. Moreover, small peptide based nano complexation showed specific recognition of the target stem cell and internalized on cellular cyotosol with stimulus responsive fluorescence. With its novel biocompatibility, the strategy might be a promising tool for drug carrier systems able to measure and visualize the delivered efficiency at intracellular sites.
Collapse
|
16
|
Pramanik AK, Siddikuzzaman, Palanimuthu D, Somasundaram K, Samuelson AG. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies. Bioconjug Chem 2016; 27:2874-2885. [PMID: 27998075 DOI: 10.1021/acs.bioconjchem.6b00537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.
Collapse
Affiliation(s)
- Anup K Pramanik
- Department of Inorganic and Physical Chemistry, ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore- 560012, India
| | - Siddikuzzaman
- Department of Inorganic and Physical Chemistry, ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore- 560012, India
| | - Duraippandi Palanimuthu
- Department of Inorganic and Physical Chemistry, ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore- 560012, India
| | - Kumaravel Somasundaram
- Department of Inorganic and Physical Chemistry, ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore- 560012, India
| | - Ashoka G Samuelson
- Department of Inorganic and Physical Chemistry, ‡Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore- 560012, India
| |
Collapse
|
17
|
Kumar D, Mutreja I, Sykes P. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone. NANOTECHNOLOGY 2016; 27:355601. [PMID: 27454145 DOI: 10.1088/0957-4484/27/35/355601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ∼100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ∼100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering-volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch School of Medicine, 8140, New Zealand
| | | | | |
Collapse
|
18
|
Harrison E, Nicol JR, Macias–Montero M, Burke GA, Coulter JA, Meenan BJ, Dixon D. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:710-8. [DOI: 10.1016/j.msec.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 02/03/2016] [Indexed: 01/26/2023]
|
19
|
Harrison E, Coulter JA, Dixon D. Gold nanoparticle surface functionalization: mixed monolayer versus hetero bifunctional peg linker. Nanomedicine (Lond) 2016; 11:851-65. [DOI: 10.2217/nnm.16.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface co-functionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.
Collapse
Affiliation(s)
- Emma Harrison
- Nanotechnology & Integrated BioEngineering Centre, University of Ulster, Belfast, Northern Ireland
| | - Jonathan A Coulter
- School of Pharmacy, Queens University Belfast, Belfast, Northern Ireland
| | - Dorian Dixon
- Nanotechnology & Integrated BioEngineering Centre, University of Ulster, Belfast, Northern Ireland
| |
Collapse
|
20
|
Nicol JR, Dixon D, Coulter JA. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine (Lond) 2016; 10:1315-26. [PMID: 25955125 DOI: 10.2217/nnm.14.219] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With several gold nanoparticle-based therapies currently undergoing clinical trials, these treatments may soon be in the clinic as novel anticancer agents. Gold nanoparticles are the subject of a wide ranging international research effort with preclinical studies underway for multiple applications including photoablation, diagnostic imaging, radiosensitization and multifunctional drug-delivery vehicles. These applications require an increasingly complex level of surface modification in order to achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to surface functionalization and the chemical approaches commonly utilized. Finally, we review a range of recent preclinical studies that aim to advance gold nanoparticle treatments toward the clinic.
Collapse
Affiliation(s)
- James R Nicol
- School of Pharmacy, McClay Research Centre, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
21
|
Borzenkov M, Chirico G, D'Alfonso L, Sironi L, Collini M, Cabrini E, Dacarro G, Milanese C, Pallavicini P, Taglietti A, Bernhard C, Denat F. Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8081-91. [PMID: 26154493 DOI: 10.1021/acs.langmuir.5b01473] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 °C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of α-mercapto-ω-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs.
Collapse
Affiliation(s)
- Mykola Borzenkov
- †Department of Physics "G. Occhialini", University of Milano Bicocca, piazza della Scienza 3, 20126 Milano, Italy
| | - Giuseppe Chirico
- †Department of Physics "G. Occhialini", University of Milano Bicocca, piazza della Scienza 3, 20126 Milano, Italy
| | - Laura D'Alfonso
- †Department of Physics "G. Occhialini", University of Milano Bicocca, piazza della Scienza 3, 20126 Milano, Italy
| | - Laura Sironi
- †Department of Physics "G. Occhialini", University of Milano Bicocca, piazza della Scienza 3, 20126 Milano, Italy
| | - Maddalena Collini
- †Department of Physics "G. Occhialini", University of Milano Bicocca, piazza della Scienza 3, 20126 Milano, Italy
| | - Elisa Cabrini
- ‡Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | - Giacomo Dacarro
- ‡Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | - Chiara Milanese
- ‡Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | | | - Angelo Taglietti
- ‡Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | - Claire Bernhard
- §Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 21078 Dijon, France
| | - Franck Denat
- §Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 21078 Dijon, France
| |
Collapse
|
22
|
Manju V, Dhandapani P, Gurusamy Neelavannan M, Maruthamuthu S, Berchmans S, Palaniappan A. Tunable release of clavam from clavam stabilized gold nanoparticles--design, characterization and antimicrobial study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:500-508. [PMID: 25686977 DOI: 10.1016/j.msec.2015.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
A facile one-step approach is developed to synthesize highly stable (up to 6months) gold nanoparticles (GNPs) using Clavam, pharmaceutical form of amoxicillin which contains a mixture of amoxicillin and potassium salt of clavulanic acid, at room temperature (25-30°C). The clavam stabilized GNPs are characterized using various techniques including UV-Visible, FT-IR spectrophotometry and transmission electron microscopy (TEM). Tunable release of clavam from clavam stabilized GNPs is demonstrated using intracellular concentrations of glutathione (GSH). The process is monitored using an UV-Vis spectroscopy and the amount of clavam released in terms of amoxicillin concentration is quantitatively estimated using reverse phase high performance liquid chromatographic (RP-HPLC) technique. In vitro study reveals that the clavam released from GNPs' surface was found to show a significant enhancement in antibacterial activity against Escherichia coli and the cause of enhancement is addressed.
Collapse
Affiliation(s)
- V Manju
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006, India
| | - P Dhandapani
- Corrosion Materials and Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu, 630006, India
| | - M Gurusamy Neelavannan
- Characterization and Measurement lab, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006, India
| | - S Maruthamuthu
- Corrosion Materials and Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu, 630006, India
| | - S Berchmans
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006, India
| | - A Palaniappan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006, India.
| |
Collapse
|
23
|
Hung SY, Shih YC, Tseng WL. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Anal Chim Acta 2014; 857:64-70. [PMID: 25604821 DOI: 10.1016/j.aca.2014.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 01/27/2023]
Abstract
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine.
Collapse
Affiliation(s)
- Szu-Ying Hung
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Ya-Chen Shih
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan; Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Taiwan.
| |
Collapse
|
24
|
Hassan S, Schade M, Shaw CP, Lévy R, Hamm P. Response of villin headpiece-capped gold nanoparticles to ultrafast laser heating. J Phys Chem B 2014; 118:7954-62. [PMID: 24597838 DOI: 10.1021/jp500845f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The integrity of a small model protein, the 36-residue villin headpiece HP36, attached to gold nanoparticles (AuNP) is examined, and its response to laser excitation of the AuNPs is investigated. To that end, it is first verified by stationary IR and CD spectroscopy, together with denaturation experiments, that the folded structure of the protein is fully preserved when attached to the AuNP surface. It is then shown by time-resolved IR spectroscopy that the protein does not unfold, even upon the highest pump fluences that lead to local temperature jumps on the order of 1000 K of the phonon system of the AuNPs, since that temperature jump persists for too short a time of a few nanoseconds only to be destructive. Judged from a blue shift of the amide I band, indicating destabilized or a few broken hydrogen bonds, the protein either swells, becomes more unstructured from the termini, or changes its degree of solvation. In any case, it recovers immediately after the excess energy dissipates into the bulk solvent. The process is entirely reversible for millions of laser shots without any indication of aggregation of the protein or the AuNPs and with only a minor fraction of broken protein-AuNP thiol bonds. The work provides important cornerstones in designing laser pulse parameters for maximal heating with protein-capped AuNPs without destroying the capping layer.
Collapse
Affiliation(s)
- Shabir Hassan
- Department of Chemistry, University of Zurich , Zurich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Coulter J, Hyland W, Nicol J, Currell F. Radiosensitising Nanoparticles as Novel Cancer Therapeutics — Pipe Dream or Realistic Prospect? Clin Oncol (R Coll Radiol) 2013; 25:593-603. [DOI: 10.1016/j.clon.2013.06.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 01/30/2023]
|