1
|
Sun N, Wang T, Zhang S. Radionuclide-labelled nanoparticles for cancer combination therapy: a review. J Nanobiotechnology 2024; 22:728. [PMID: 39578828 PMCID: PMC11585169 DOI: 10.1186/s12951-024-03020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Radionuclide therapy (RT) is widely used to advanced local cancers. However, its therapeutic efficacy is limited to the radiation resistance of cancer cells. Combination therapy aims to circumvent tumor resistance, and the combination of RT with photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CMT), and immunotherapy has shown promising treatment outcomes. Nanotechnology holds promise in advancing combination therapy by integrating multiple therapies on a nanostructure platform. This is due to the increased surface area, passive/active targeting capabilities, high payload capacity, and enriched surface of nanomedicines, offering significant advantages in treatment sensitivity and specificity. In the first part of this review, we categorize radionuclide therapy. The second part summarizes the latest developments in combination therapies, specifically focusing on the integration of RT with PTT, PDT, CMT and immunotherapy. The last part provides an overview of the challenges and potential opportunities related to radionuclide-labelled nanoparticles for cancer combination therapy.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Tao Wang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China.
| |
Collapse
|
2
|
Peng H, Jiang Q, Mao W, Hu Z, Wang Q, Yu Z, Zhang L, Wang X, Zhuang C, Mai J, Wang Z, Sun T. Fe-HCOF-PEG 2000 as a Hypoxia-Tolerant Photosensitizer to Trigger Ferroptosis and Enhance ROS-Based Cancer Therapy. Int J Nanomedicine 2024; 19:10165-10183. [PMID: 39399828 PMCID: PMC11468433 DOI: 10.2147/ijn.s479848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
Background The hypoxic tumor microenvironment and single mechanisms severely limit the photodynamic therapy (PDT) efficiency of covalent organic framework (COF) nanoparticles in cancer treatment. Purpose Here, we propose an iron-loaded, hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000)-modified hollow covalent organic framework (HCOF), Fe-HCOF-PEG2000, for use in hypoxic PDT and ferroptosis therapy owing to its type I and II photodynamic ability and iron nanoparticle loading property. Results Fe-HCOF-PEG2000 nanoparticles (Fe-HCOFs-PEG2000) with semiconducting polymers and microporous skeletons allow efficient photophysical properties. Moreover, the iron nanoparticles on Fe-HCOF-PEG2000 caused ferroptosis and further enhanced tumor elimination under normoxic and hypoxic conditions. DSPE-PEG2000 endowed Fe-HCOF-PEG2000 with hydrophilicity, allowing it to circulate and accumulate in organs rich in blood supply, especially tumors. 808 nm NIR activated Fe-HCOF-PEG2000 aggregated in tumors and significantly inhibited tumor growth under hypoxia. Conclusion To our knowledge, Fe-HCOF-PEG2000 is the leading combination of type I/II PDT and ferroptosis. The strong antitumor effects of this nanomaterial suggest prospects for clinical translation as a tumor nanotherapy drug.
Collapse
Affiliation(s)
- Hui Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping Wuhan Brain Hospital, Wuhan, Hubei, 430010, People’s Republic of China
| | - Qian Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Wenhao Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Zhonglan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qi Wang
- Department of Pharmacy, Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, People’s Republic of China
| | - Zhuo Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Li Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xinyan Wang
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Chunbo Zhuang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
3
|
Liu X, Zhang J, Guo X, Huang J, Lou Z, Zhao X, Lin Q, Li X, You J, Luo L. Enhancing tumor immunotherapy via photodynamic therapy with a cascade reaction of reactive oxygen species and sustaining nutrient supply. J Control Release 2023; 364:S0168-3659(23)00687-9. [PMID: 39492516 DOI: 10.1016/j.jconrel.2023.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Photo-immunotherapy is a promising strategy for the treatment of malignancies; however, its efficacy is often limited by the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME). TME is typically deficient in L-arginine (L-Arg), which negatively impacts T cell survival and function. To address this issue, we developed a novel drug delivery system based on the multi-vesicular liposomes (MVLs) loaded with photosensitizer indocyanine green (ICG) and L-Arg (R), named R-ICG@MVLs. Under near-infrared (NIR) light irradiation, the PDT-mediated cascade reaction of reactive oxygen species (ROS) could oxidize a portion of L-Arg to generate NO, thereby inducing immunogenic tumor cell death (ITCD) and stimulating anti-tumor immune responses, including antigen-presenting cells (APCs) recruitment and T cells activation. Subsequently, R-ICG@MVLs continued to release L-Arg, which improved the immunosuppressive TME, providing nutritional support for the tumor-infiltrating T cells and thus enhancing their anti-tumor efficacy. Additionally, the photo-thermal effect of ICG could accelerate the membrane rearrangement of R-ICG@MVLs and produce multiple drug-loaded nanovesicles, thus enabling the NIR-controlled accelerated drug release. The formation of drug-loaded nanovesicles led to deeper penetration and widened the range of ICD and TME improvement, achieving a "shrapnel effect". In conclusion, our strategy realized the dual effects of immune activation and nutrition support, which might provide a clinically applicable reference for tumor immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zeliang Lou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
4
|
Li Y, Qi R, Wang X, Yuan H. Recent Strategies to Develop Conjugated Polymers for Detection and Therapeutics. Polymers (Basel) 2023; 15:3570. [PMID: 37688196 PMCID: PMC10490465 DOI: 10.3390/polym15173570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The infectious diseases resulting from pathogenic microbes are highly contagious and the source of infection is difficult to control, which seriously endangers life and public health safety. Although the emergence of antibiotics has a good therapeutic effect in the early stage, the massive abuse of antibiotics has brought about the evolution of pathogens with drug resistance, which has gradually weakened the lethality and availability of antibiotics. Cancer is a more serious disease than pathogenic bacteria infection, which also threatens human life and health. Traditional treatment methods have limitations such as easy recurrence, poor prognosis, many side effects, and high toxicity. These two issues have led to the exploration and development of novel therapeutic agents (such as conjugated polymers) and therapeutic strategies (such as phototherapy) to avoid the increase of drug resistance and toxic side effects. As a class of organic polymer biological functional materials with excellent photoelectric properties, Conjugated polymers (CPs) have been extensively investigated in biomedical fields, such as the detection and treatment of pathogens and tumors due to their advantages of easy modification and functionalization, good biocompatibility and low cost. A rare comprehensive overview of CPs-based detection and treatment applications has been reported. This paper reviews the design strategies and research status of CPs used in biomedicine in recent years, introduces and discusses the latest progress of their application in the detection and treatment of pathogenic microorganisms and tumors according to different detection or treatment methods, as well as the limitations and potential challenges in prospective exploration.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Mezghrani B, Ali LMA, Cubedo N, Rossel M, Hesemann P, Durand JO, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for Dual Cancer Therapy: Two-Photon Excitation siRNA Gene Silencing in Cells and Photodynamic Therapy in Zebrafish Embryos. Int J Pharm 2023:123083. [PMID: 37245740 DOI: 10.1016/j.ijpharm.2023.123083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Photodynamic therapy (PDT) and photochemical internalization (PCI) are two methods that use light to provoke cell death or disturbance of cellular membranes, respectively, via excitation of a photosensitizer and the formation of reactive oxygen species (ROS). In this context, two-photon excitation (TPE) is of high interest for PCI and/or PDT due to spatiotemporal resolution of two-photon light and deeper penetration of near-infrared light in biological tissues. Here, we report that Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) containing porphyrin groups allow the complexation of pro-apoptotic siRNA. These nano-objects were incubated with MDA-MB-231 breast cancer cells, and TPE-PDT led to significant cell death. Finally, MDA-MB-231 breast cancer cells were pre-incubated with the nanoparticles and then injected in the pericardial cavity of zebrafish embryos. After 24 hours, the xenografts were irradiated with femtosecond pulsed laser and the size monitoring by imaging showed a decrease 24 h after irradiation. Pro-apoptotic siRNA was complexed with the nanoparticles and incubation with MDA-MB-231 cells did not lead to cancer cell death in dark conditions, but with two-photon irradiation, TPE-PCI was observed and a synergic effect between pro-apoptotic siRNA and TPE-PDT was noticed, leading to 90% of cancer cell death. Therefore, PMINPs represent an interesting system for nanomedicine applications.
Collapse
Affiliation(s)
- Braham Mezghrani
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; Department of Biochemistry, Medical Research Institute, Alexandria University, 21561 Alexandria, Egypt
| | - Nicolas Cubedo
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Mireille Rossel
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France.
| |
Collapse
|
6
|
Wang C, Sun Y, Huang S, Wei Z, Tan J, Wu C, Chen Q, Zhang X. Self-Immolative Photosensitizers for Self-Reported Cancer Phototheranostics. J Am Chem Soc 2023. [PMID: 37216494 DOI: 10.1021/jacs.3c01666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photosensitizers to precise target and change fluorescence upon light illumination could accurately self-report where and when the photosensitizers work, enabling us to visualize the therapeutic process and precisely regulate treatment outcomes, which is the unremitting pursuit of precision and personalized medicine. Here, we report self-immolative photosensitizers by adopting a strategy of light-manipulated oxidative cleavage of C═C bonds that can generate a burst of reactive oxygen species, to cleave to release self-reported red-emitting products and trigger nonapoptotic cell oncosis. Strong electron-withdrawing groups are found to effectively suppress the C═C bond cleavage and phototoxicity via studying the structure-activity relationship, allowing us to elaborate NG1-NG5 that could temporarily inactivate the photosensitizer and quench the fluorescence by different glutathione (GSH)-responsive groups. Thereinto, NG2 with 2-cyano-4-nitrobenzene-1-sulfonyl group displays excellent GSH responsiveness than the other four. Surprisingly, NG2 shows better reactivity with GSH in weakly acidic condition, which inspires the application in weakly acidic tumor microenvironment where GSH elevates. To this end, we further synthesize NG-cRGD by anchoring integrin αvβ3 binding cyclic pentapeptide (cRGD) for tumor targeting. In A549 xenografted tumor mice, NG-cRGD successfully deprotects to restore near-infrared fluorescence because of elevated GSH in tumor site, which is subsequently cleaved upon light irradiation releasing red-emitting products to report photosensitizer working, while effectively ablating tumors via triggered oncosis. The advanced self-immolative organic photosensitizer may accelerate the development of self-reported phototheranostics in future precision oncology.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Shaojuan Huang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zixiang Wei
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jingyun Tan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|
7
|
Yuan H, Li Z, Wang X, Qi R. Photodynamic Antimicrobial Therapy Based on Conjugated Polymers. Polymers (Basel) 2022; 14:polym14173657. [PMID: 36080734 PMCID: PMC9459975 DOI: 10.3390/polym14173657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogenic microorganisms have been a serious threat to human life and have become a public health problem of global concern. However, in the actual treatment there is a lack of efficient antimicrobial strategies which do not easily develop drug resistance; this can lead to inaccurate drug treatment that worsens the infection and even threatens life. With the emergence of a variety of drug-resistant bacteria and fungi, photodynamic therapy has gradually become one of the most promising treatment methods for drug-resistant bacteria infection; this is because it is controllable, non-invasive, and not prone to cause the development of drug resistance. Organic conjugated polymers that possess high fluorescence intensity, a large molar extinction coefficient, excellent light stability, an adjustable energy band, easy modification, good biocompatibility, and the ability to photosensitize oxygen to produce reactive oxygen species have been widely used in the fields of solar cells, highly sensitive detection systems, biological imaging, and anti-cancer and anti-microbial treatment. Photodynamic therapy is non-invasive and has high temporal and spatial resolution and is a highly effective antimicrobial treatment that does not easily induce drug resistance; it has also stimulated the scientific research enthusiasm of researchers and has become a research hotspot in the antimicrobial field. In this review, the photodynamic antibacterial applications of conjugated polymers with different structure types are summarized, and their development directions are considered.
Collapse
Affiliation(s)
- Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zelin Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
8
|
Cao J, Zheng M, Sun Z, Li Z, Qi X, Shen S. One-Step Fabrication of Multifunctional PLGA-HMME-DTX@MnO2 Nanoparticles for Enhanced Chemo-Sonodynamic Antitumor Treatment. Int J Nanomedicine 2022; 17:2577-2591. [PMID: 35698563 PMCID: PMC9188410 DOI: 10.2147/ijn.s365570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Sonodynamic therapy (SDT) and its synergistic cancer therapy derivatives, such as combined chemotherapy-SDT (chemo-SDT), are promising approaches for tumor treatment. However, the main drawbacks restricting their applications are hypoxia in tumors and the reducing microenvironment or high glutathione (GSH) levels. Methods In this study, a hybrid metal MnO2 was deposited onto nanoparticles fabricated using poly(lactic-co-glycolic acid) (PLGA), carrying docetaxel (DTX) and the sonosensitizer hematoporphyrin monomethyl ether (HMME) (PHD@MnO2) via a one-step flash nanoprecipitation (FNP) method. Characterization and in vitro and in vivo experiments were conducted to explore the chemo-SDT effect of PHD@MnO2 and evaluate the synergetic antitumor treatment of this nanosystem. Results When low-power ultrasound is applied, the acquired PHD@MnO2, whether in solution or in MCF-7 cells, generated ROS more efficiently than other groups without MnO2 or those treated via monotherapy. Specifically, GSH-depletion was observed when MnO2 was introduced into the system. PHD@MnO2 presented good biocompatibility and biosafety in vitro and in vivo. These results indicated that the PHD@MnO2 nanoparticles overcame hypoxia in tumor tissue and suppressed the expression of hypoxia-inducible factor 1 alpha (HIF-1α), achieving enhanced chemo-SDT. Conclusion This study provides a paradigm that rationally engineered multifunctional metal-hybrid nanoparticles can serve as an effective platform for augmenting the antitumor therapeutic efficiency of chemo-SDT.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
| | - Mingxue Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
| | - Zhenyan Sun
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
| | - Zhiye Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
| | - Song Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, People’s Republic of China
- Correspondence: Song Shen; Xueyong Qi, School of Pharmacy, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, People’s Republic of China, Tel +86-0511-88795939, Email ;
| |
Collapse
|
9
|
Ding J, Guo Y. Recent Advances in Chitosan and its Derivatives in Cancer Treatment. Front Pharmacol 2022; 13:888740. [PMID: 35694245 PMCID: PMC9178414 DOI: 10.3389/fphar.2022.888740] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer has become a main public health issue globally. The conventional treatment measures for cancer include surgery, radiotherapy and chemotherapy. Among the various available treatment measures, chemotherapy is still one of the most important treatments for most cancer patients. However, chemotherapy for most cancers still faces many problems associated with a lot of adverse effects, which limit its therapeutic potency, low survival quality and discount cancer prognosis. In order to decrease these side effects and improve treatment effectiveness and patient’s compliance, more targeted treatments are needed. Sustainable and controlled deliveries of drugs with controllable toxicities are expected to address these hurdles. Chitosan is the second most abundant natural polysaccharide, which has excellent biocompatibility and notable antitumor activity. Its biodegradability, biocompatibility, biodistribution, nontoxicity and immunogenicity free have made chitosan become a widely used polymer in the pharmacology, especially in oncotherapy. Here, we make a brief review of the main achievements in chitosan and its derivatives in pharmacology with a special focus on their agents delivery applications, immunomodulation, signal pathway modulation and antitumor activity to highlight their role in cancer treatment. Despite a large number of successful studies, the commercialization of chitosan copolymers is still a big challenge. The further development of polymerization technology may satisfy the unmet medical needs.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yonghong Guo,
| |
Collapse
|