1
|
Domínguez-Lazcano DG, Simón-Lara I, Morales-Romero J, Vásquez-Garzón VR, Arroyo-Helguera OE, López-Vazquez J, Campos-Parra AD, Hernández-Nopaltecatl B, Rivera-Hernández XA, Quintana S, García-Román R. Alpha-fetoprotein, glypican-3, and kininogen-1 as biomarkers for the diagnosis of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:383-395. [PMID: 39660335 PMCID: PMC11626288 DOI: 10.62347/qsii4050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/23/2024] [Indexed: 12/12/2024]
Abstract
The hepatocarcinoma (HCC) is the most important liver tumor. It represents 90% of liver cancer cases. One of the main problems is the limited prompt cancer diagnosis and the advanced stages where the chances of treatment are limited. The main diagnostic methods for HCC are imaging techniques and liver biopsy. With advances in technology, proteins as significant diagnostic biomarkers have increased. The objective of this review is to describe the role of Alpha-fetoprotein (AFP), Glipican 3 (GPC-3), and Kininogen 1 (KNG-1) as biomarkers for the diagnosis of hepatocellular carcinoma. A systematic search of studies was carried out in the literature and the diagnostic values of these proteins were compared. The results showed that the combined use of biomarkers increases the diagnostic capacity for the detection of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Ingrid Simón-Lara
- Facultad de Medicina, Región Poza-Rica-Tuxpan, Universidad VeracruzanaXalapa, Veracruz, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
3
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
4
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Li Y, Fang Y, Li D, Wu J, Huang Z, Liao X, Liu X, Wei C, Huang Z. Constructing a prognostic model for hepatocellular carcinoma based on bioinformatics analysis of inflammation-related genes. Front Med (Lausanne) 2024; 11:1420353. [PMID: 39055701 PMCID: PMC11269197 DOI: 10.3389/fmed.2024.1420353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background This study aims to screen inflammation-related genes closely associated with the prognosis of hepatocellular carcinoma (HCC) to accurately forecast the prognosis of HCC patients. Methods Gene expression matrices and clinical information for liver cancer samples were obtained from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An intersection of differentially expressed genes of HCC and normal and GeneCards yielded inflammation-related genes associated with HCC. Cox regression and the minor absolute shrinkage and selection operator (LASSO) regression analysis to filter genes associated with HCC prognosis. The prognostic value of the model was confirmed by drawing Kaplan-Meier and ROC curves. Select differentially expressed genes between the high-risk and low-risk groups and perform GO and KEGG pathways analyses. CIBERSORT analysis was conducted to assess associations of risk models with immune cells and verified using real-time qPCR. Results A total of six hub genes (C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1) were selected using multivariate Cox regression to construct a prognostic model. The validation evaluation of the prognostic model showed that it has an excellent ability to predict prognosis. A line plot was drawn to indicate the HCC patients' survival, and the calibration curve revealed satisfactory predictability. Among the six hub genes, C3 and DNASE1L3 are relatively low expressed in HCCLM3 and 97H liver cancer cell lines, while CTNNB1, CYBC1, IRAK1, and SERPINE1 are relatively overexpressed in liver cancer cell lines. Conclusion One new inflammatory factor-associated prognostic model was constructed in this study. The risk score can be an independent predictor for judging the prognosis of HCC patients' survival.
Collapse
Affiliation(s)
- Yinglian Li
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Fang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - DongLi Li
- Radiology Department, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Jiangtao Wu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zichong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xueyin Liao
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Liu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Chunxiao Wei
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Samaei SS, Daryab M, Gholami S, Rezaee A, Fatehi N, Roshannia R, Hashemi S, Javani N, Rahmanian P, Amani-Beni R, Zandieh MA, Nabavi N, Rashidi M, Malgard N, Hashemi M, Taheriazam A. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl Oncol 2024; 45:101975. [PMID: 38692195 PMCID: PMC11070928 DOI: 10.1016/j.tranon.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, mainly occurring in Asian countries with an increased incidence rate globally. Currently, several kinds of therapies have been deployed for HCC therapy including surgical resection, chemotherapy, radiotherapy and immunotherapy. However, this tumor is still incurable, requiring novel strategies for its treatment. The nanomedicine has provided the new insights regarding the treatment of cancer that liposomes as lipid-based nanoparticles, have been widely applied in cancer therapy due to their biocompaitiblity, high drug loading and ease of synthesis and modification. The current review evaluates the application of liposomes for the HCC therapy. The drugs and genes lack targeting ability into tumor tissues and cells. Therefore, loading drugs or genes on liposomes can increase their accumulation in tumor site for HCC suppression. Moreover, the stimuli-responsive liposomes including pH-, redox- and light-sensitive liposomes are able to deliver drug into tumor microenvironment to improve therapeutic index. Since a number of receptors upregulate on HCC cells, the functionalization of liposomes with lactoferrin and peptides can promote the targeting ability towards HCC cells. Moreover, phototherapy can be induced by liposomes through loading phtoosensitizers to stimulate photothermal- and photodynamic-driven ablation of HCC cells. Overall, the findings are in line with the fact that liposomes are promising nanocarriers for the treatment of HCC.
Collapse
Affiliation(s)
- Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Roshannia
- Faculty of Life Science and Bio-technology, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hashemi
- Faculty of Veterinary Medicine, Department of Clinical Sciences, University of Shahrekord, Shahrekord, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Neda Malgard
- Department of Internal medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Peyret C, Manousaki A, Bouguet-Bonnet S, Stratakis E, Sanchez-Gonzalez L, Kahn CJ, Arab-Tehrany E. Nanoliposomes Permeability in a Microfluidic Drug Delivery Platform across a 3D Hydrogel. Pharmaceutics 2024; 16:765. [PMID: 38931887 PMCID: PMC11207390 DOI: 10.3390/pharmaceutics16060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoliposomes are nano-sized vesicles that can be used as drug delivery carriers with the ability to encapsulate both hydrophobic and hydrophilic compounds. Moreover, their lipid compositions facilitate their internalization by cells. However, the interaction between nanoliposomes and the membrane barrier of the human body is not well-known. If cellular tests and animal testing offer a solution, their lack of physiological relevance and ethical concerns make them unsuitable to properly mimic human body complexity. Microfluidics, which allows the environment of the human body to be imitated in a controlled way, can fulfil this role. However, existing models are missing the presence of something that would mimic a basal membrane, often consisting of a simple cell layer on a polymer membrane. In this study, we investigated the diffusion of nanoliposomes in a microfluidic system and found the optimal parameters to maximize their diffusion. Then, we incorporated a custom made GelMA with a controlled degree of substitution and studied the passage of fluorescently labeled nanoliposomes through this barrier. Our results show that highly substituted GelMA was more porous than lower substitution GelMA. Overall, our work lays the foundation for the incorporation of a hydrogel mimicking a basal membrane on a drug delivery microfluidic platform.
Collapse
Affiliation(s)
- Corentin Peyret
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| | - Aleka Manousaki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 711 10 Heraklion, Greece; (A.M.); (E.S.)
| | | | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 711 10 Heraklion, Greece; (A.M.); (E.S.)
| | | | - Cyril J.F. Kahn
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| | - Elmira Arab-Tehrany
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| |
Collapse
|
8
|
Li C, Du M, Meng L, Adu-Frimpong M, Gong C, Zheng S, Shi W, Wang Q, Toreniyazov E, Ji H, Cao X, Yu J, Xu X. Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes. J Microencapsul 2024; 41:269-283. [PMID: 38618699 DOI: 10.1080/02652048.2024.2337461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
AIMS Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 μg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lingzhi Meng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Caizhi Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sile Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wentao Shi
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province211300, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Karakalpakstan, Uzbekistan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
9
|
Hu B, Qiao W, Cao Y, Fu X, Song J. A sono-responsive antibacterial nanosystem co-loaded with metformin and bone morphogenetic protein-2 for mitigation of inflammation and bone loss in experimental peri-implantitis. Front Bioeng Biotechnol 2024; 12:1410230. [PMID: 38854857 PMCID: PMC11157067 DOI: 10.3389/fbioe.2024.1410230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.
Collapse
Affiliation(s)
- Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wang Qiao
- Department of Stomatology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
10
|
Li SB, Zou J, Zhao TSY, Liang B, Wang LS, Huang LZ, Liang CQ, Zhou XL. Antitumor effects of Cypaliuruside F from Cyclocarya paliurus on HepG2 cells. Nat Prod Res 2024:1-7. [PMID: 38771014 DOI: 10.1080/14786419.2024.2355590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
An undescribed dammarane triterpenoid saponin Cypaliuruside F was isolated from the leaves of Cyclocarya paliurus in our preliminary study. The MTT assay, flow cytometry, cell scratch, and DAPI staining were used to detect the antitumor effects of Cypaliuruside F on HepG2 cells. Subsequently, network pharmacology and molecular docking analysis were used to analyse the key targets of Cypaliuruside F against HCC. In addition, a Western blot was performed to determine the effects of Cypaliuruside F on the expression of key proteins in HepG2 cells. The experimental results indicated that the damarane triterpenoid saponin Cypaliuruside F from Cyclocarya paliurus inhibits the proliferation of HepG2 cells by inducing apoptosis and cell cycle arrest. These changes may promote the apoptosis of HepG2 cells by inhibiting the expression of mTOR, STAT3, and Bcl-2 while activating Bax.
Collapse
Affiliation(s)
- Shan-Bin Li
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Guilin, P. R. China
| | - Jian Zou
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Guilin, P. R. China
| | - Tong-Shi-Yao Zhao
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Guilin, P. R. China
| | - Bin Liang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Guilin, P. R. China
| | - Li-Sheng Wang
- College of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Lan-Zhen Huang
- Science Experiment Center, Guilin Medical University, Guilin, P. R. China
| | - Cheng-Qin Liang
- College of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Xian-Li Zhou
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Guilin, P. R. China
| |
Collapse
|
11
|
Li H, Ma YP, Wang HL, Tian CJ, Guo YX, Zhang HB, Liu XM, Liu PF. Establishment of a prognosis predictive model for liver cancer based on expression of genes involved in the ubiquitin-proteasome pathway. World J Clin Oncol 2024; 15:434-446. [PMID: 38576590 PMCID: PMC10989257 DOI: 10.5306/wjco.v15.i3.434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The ubiquitin-proteasome pathway (UPP) has been proven to play important roles in cancer. AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes. METHODS In this study, UPP-related E1, E2, E3, deubiquitylating enzyme, and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based on the Cancer Genome Atlas liver cancer cases. RESULTS Five genes (including autophagy related 10, proteasome 20S subunit alpha 8, proteasome 20S subunit beta 2, ubiquitin specific peptidase 17 like family member 2, and ubiquitin specific peptidase 8) were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer. Among training, validation, and Gene Expression Omnibus sets, the overall survival differed significantly between the high-risk and low-risk groups. The expression of the five genes was significantly associated with immunocyte infiltration, tumor stage, and postoperative recurrence. A total of 111 differentially expressed genes (DEGs) were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways. Cell division cycle 20, Kelch repeat and BTB domain containing 11, and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival. CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer, which contains five genes that associate with immunocyte infiltration, tumor stage, and postoperative recurrence.
Collapse
Affiliation(s)
- Hua Li
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi-Po Ma
- Department of Critical Care Medicine, Dingzhou City People’s Hospital, Dingzhou 073000, Hebei Province, China
| | - Hai-Long Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Cai-Juan Tian
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin 300180, China
| | - Yi-Xian Guo
- Department of Intelligent Technology, Tianjin Yunquan Intelligent Technology Co., Ltd, Tianjin 300381, China
| | - Hong-Bo Zhang
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin 300180, China
| | - Xiao-Min Liu
- Department of Oncology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Peng-Fei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| |
Collapse
|
12
|
Yang M, Jiang G, Li Y, Chen W, Zhang S, Wang R. Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study. Pharm Dev Technol 2024; 29:176-186. [PMID: 38376879 DOI: 10.1080/10837450.2024.2319738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yumeng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shantang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
13
|
Nag S, Mitra O, Tripathi G, Adur I, Mohanto S, Nama M, Samanta S, Gowda BHJ, Subramaniyan V, Sundararajan V, Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn Ther 2024; 45:103959. [PMID: 38228257 DOI: 10.1016/j.pdpdt.2023.103959] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Garima Tripathi
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Israrahmed Adur
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Escutia-Gutiérrez R, Sandoval-Rodríguez A, Zamudio-Ojeda A, Guevara-Martínez SJ, Armendáriz-Borunda J. Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma. J Clin Med 2023; 12:6867. [PMID: 37959332 PMCID: PMC10647688 DOI: 10.3390/jcm12216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.
Collapse
Affiliation(s)
- Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Adalberto Zamudio-Ojeda
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Santiago José Guevara-Martínez
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico
| |
Collapse
|
17
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
18
|
Wang X, Zhao M, Zhang C, Chen H, Liu X, An Y, Zhang L, Guo X. Establishment and Clinical Application of the Nomogram Related to Risk or Prognosis of Hepatocellular Carcinoma: A Review. J Hepatocell Carcinoma 2023; 10:1389-1398. [PMID: 37637500 PMCID: PMC10460189 DOI: 10.2147/jhc.s417123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy, accounting for approximately 90% of all primary liver cancers, with high mortality and a poor prognosis. A large number of predictive models have been applied that integrate multiple clinical factors and biomarkers to predict the prognosis of HCC. Nomograms, as easy-to-use prognostic predictive models, are widely used to predict the probability of clinical outcomes. We searched PubMed with the keywords "hepatocellular carcinoma" and "nomogram", and 974 relative literatures were retrieved. According to the construction methodology and the real validity of the nomograms, in this study, 97 nomograms for HCC were selected in 77 publications. These 97 nomograms were established based on more than 100,000 patients, covering seven main prognostic outcomes. The research data of 56 articles are from hospital-based HCC patients, and 13 articles provided external validation results of the nomogram. In addition to AFP, tumor size, tumor number, stage, vascular invasion, age, and other common prognostic risk factors are included in the HCC-related nomogram, more and more biomarkers, including gene mRNA expression, gene polymorphisms, and gene signature, etc. were also included in the nomograms. The establishment, assessment and validation of these nomograms are also discussed in depth. This study would help clinicians construct and select appropriate nomograms to guide precise judgment and appropriate treatments.
Collapse
Affiliation(s)
- Xiangze Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Minghui Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Chensheng Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Haobo Chen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xingyu Liu
- School of Computer and Information Engineering, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Yang An
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
19
|
Jia Y, Sun C, Chen T, Zhu H, Wang T, Ye Y, Luo X, Zeng X, Yang Y, Zeng H, Zou Q, Liu E, Li J, Sun H. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J Nanobiotechnology 2023; 21:240. [PMID: 37491290 PMCID: PMC10369765 DOI: 10.1186/s12951-023-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/25/2023] [Indexed: 07/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ting Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tianrui Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xing Luo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqiang Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Enqiang Liu
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Jieping Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
20
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
21
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
22
|
Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X, Wang X. Fe-MnO 2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother 2023; 161:114431. [PMID: 36827713 DOI: 10.1016/j.biopha.2023.114431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ferroptosis has emerged as a therapeutic tactic to trigger cancer cell death driven by abnormal accumulation of reactive oxygen species (ROS). However, a single ferroptosis treatment modality is often limited. In this work, a combination therapy of ferroptosis and immunotherapy for cancer was proposed. Specifically, a versatile nanodrug was designed for the multiple treatment of hepatocellular carcinoma (HCC) by loading dihydroartemisinin (DHA) on Fe3+-doped MnO2 nanosheets (Fe-MnO2/DHA). Firstly, Fe-MnO2/DHA was degraded by glutathione (GSH) in the tumor microenvironment (TME) to release Fe2+, Mn2+ and DHA, leading to aberrant ROS accumulation due to Fenton/Fenton-like reaction. Secondly, breakage of endoperoxide bridge from DHA was caused by Fe2+ to further induce oxidative stress. Thirdly, the depleted GSH promoted the inactivation of glutathione peroxidase 4 (GPX4), resulting in lipid peroxide (LPO) accumulation. The resulting LPO and ROS could induce ferroptosis and apoptosis of liver cancer cells. Furthermore, Fe-MnO2/DHA mediated three-pronged stimulation of oxidative stress, resulting in high levels of targeted immunogenic cell death (ICD). It could enhance the infiltration of CD4+ T and CD8+ T cells, and promote macrophage polarization. DHA also acted as an immunomodulator to inhibit regulatory T cells (Tregs) for systemic antitumor. Overall, Fe-MnO2/DHA presents a multi-modal therapy for HCC driven by ferroptosis, apoptosis and immune activation, significantly advancing synergistic cancer treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
23
|
Chavda VP, Balar PC, Patel SB. Interventional nanotheranostics in hepatocellular carcinoma. Nanotheranostics 2023; 7:128-141. [PMID: 36793354 PMCID: PMC9925354 DOI: 10.7150/ntno.80120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Interventional nanotheranostics is a system of drug delivery that does a dual function; along with the therapeutic action, it also does have diagnostic features. This method helps in early detection, targeted delivery, and the least chances of damage to surrounding tissue. It ensures the highest efficiency for the management of the disease. Imaging is the near future for the quickest and most accurate detection of disease. After combing both effective measures, it ensures the most meticulous drug delivery system. Nanoparticles such as Gold NPs, Carbon NPs, Silicon NPS, etc. The article emphasizes on effect of this delivery system in the treatment of Hepatocellular Carcinoma. It is one of the widely spreading diseases and theranostics is trying to make the scenario better. The review suggests the pitfall of the current system and how theranostics can help. It describes the mechanism used to generate its effect and believes that interventional nanotheranostics do have a future with rainbow color. The article also describes the current hindrance to the flourishing of this miraculous technology.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Pankti C. Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Srushti B. Patel
- Pharmacy Section, Government Pharmacy College, Gandhinagar, India
| |
Collapse
|
24
|
Zhou F, Ma J, Zhu Y, Wang T, Yang Y, Sun Y, Chen Y, Song H, Huo X, Zhang J. The role and potential mechanism of O-Glycosylation in gastrointestinal tumors. Pharmacol Res 2022; 184:106420. [PMID: 36049664 DOI: 10.1016/j.phrs.2022.106420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 10/15/2022]
Abstract
Glycosylation is a critical post-translational modification (PTM) that affects the function of proteins and regulates cell signaling, thereby regulating various biological processes. Protein oxygen-N-acetylglucosamine (O-GlcNAc) glycosylation modifications are glycochemical modifications that occur within cells in the signal transduction and are frequently found in the cytoplasm and nucleus. Due to the rapid and reversible addition and removal, O-GlcNAc modifications are able to reversibly compete with certain phosphorylation modifications, immediately regulate the activity of proteins, and participate in kinds of cellular metabolic and signal transduction pathways, playing a pivotal role in the regulation of tumors, diabetes, and other diseases. This article provided a brief overview of O-GlcNAc glycosylation modification, introduced its role in altering the progression and immune response regulation of gastrointestinal tumors, and discussed its potential use as a marker of tumor neogenesis.
Collapse
Affiliation(s)
- Feinan Zhou
- The department of Spleen and Stomach Diseases of Cadres Healthcare Centre, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yongfu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Tianming Wang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yue Yang
- Laboratory of Infection and Immunity, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Yehan Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Youmou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Province 230000, China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong Province 510799, China.
| |
Collapse
|
25
|
Bartos A, Iancu I, Ciobanu L, Onaciu A, Moldovan C, Moldovan A, Moldovan RC, Tigu AB, Stiufiuc GF, Toma V, Iancu C, Al Hajjar N, Stiufiuc RI. Hybrid Lipid Nanoformulations for Hepatoma Therapy: Sorafenib Loaded Nanoliposomes-A Preliminary Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2833. [PMID: 36014698 PMCID: PMC9414144 DOI: 10.3390/nano12162833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sorafenib is a multikinase inhibitor that has received increasing attention due to its high efficacy in hepatocellular carcinoma treatment. However, its poor pharmacokinetic properties (limited water solubility, rapid elimination, and metabolism) still represent major bottlenecks that need to be overcome in order to improve Sorafenib's clinical application. In this paper, we propose a nanotechnology-based hybrid formulation that has the potential to overcome these challenges: sorafenib-loaded nanoliposomes. Sorafenib molecules have been incorporated into the hydrophobic lipidic bilayer during the synthesis process of nanoliposomes using an original procedure developed in our laboratory and, to the best of our knowledge, this is the first paper reporting this type of analysis. The liposomal hybrid formulations have been characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA) that provided useful information concerning their shape, size, zeta-potential, and concentration. The therapeutic efficacy of the nanohybrids has been evaluated on a normal cell line (LX2) and two hepatocarcinoma cell lines, SK-HEP-1 and HepG2, respectively.
Collapse
Affiliation(s)
- Adrian Bartos
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ioana Iancu
- Department of Surgery, Medicover Hospital, 407062 Cluj-Napoca, Romania
| | - Lidia Ciobanu
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Anca Onaciu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alin Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Radu Cristian Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | | | - Valentin Toma
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Rares Ionut Stiufiuc
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Li CH, Chang YC, Hsiao M, Chan MH. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics 2022; 14:1282. [PMID: 35745854 PMCID: PMC9229768 DOI: 10.3390/pharmaceutics14061282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a disease characterized by abnormal cell growth. According to a report published by the World Health Organization (WHO), cancer is the second leading cause of death globally, responsible for an estimated 9.6 million deaths in 2018. It should be noted that ultrasound is already widely used as a diagnostic procedure for detecting tumorigenesis. In addition, ultrasound energy can also be utilized effectively for treating cancer. By filling the interior of lipospheres with gas molecules, these particles can serve both as contrast agents for ultrasonic imaging and as delivery systems for drugs such as microbubbles and nanobubbles. Therefore, this review aims to describe the nanoparticle-assisted drug delivery system and how it can enhance image analysis and biomedicine. The formation characteristics of nanoparticles indicate that they will accumulate at the tumor site upon ultrasonic imaging, in accordance with their modification characteristics. As a result of changing the accumulation of materials, it is possible to examine the results by comparing images of other tumor cell lines. It is also possible to investigate ultrasound images for evidence of cellular effects. In combination with a precision ultrasound imaging system, drug-carrying lipospheres can precisely track tumor tissue and deliver drugs to tumor cells to enhance the ability of this nanocomposite to treat cancer.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|