1
|
Bhatnagar P, Law JX, Ng SF. Chitosan Reinforced with Kenaf Nanocrystalline Cellulose as an Effective Carrier for the Delivery of Platelet Lysate in the Acceleration of Wound Healing. Polymers (Basel) 2021; 13:4392. [PMID: 34960943 PMCID: PMC8707177 DOI: 10.3390/polym13244392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility, cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites were analyzed. The study of swelling ratio (>1000%) and moisture loss (60-90%) showed the excellent water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product. In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation. The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller as a potential autologous PL wound therapy.
Collapse
Affiliation(s)
- Payal Bhatnagar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, 12th Floor, Clinical Block, UKM Medical Centre, Jalan Yaa’cob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
2
|
Witkowska J, Sowińska A, Czarnowska E, Płociński T, Rajchel B, Tarnowski M, Wierzchoń T. Structure and properties of composite surface layers produced on NiTi shape memory alloy by a hybrid method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:110. [PMID: 30019236 PMCID: PMC6061091 DOI: 10.1007/s10856-018-6118-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
A hybrid process that combines oxidation under glow-discharge conditions with ion beam-assisted deposition (IBAD) has been applied to mechanically polished NiTi shape memory alloy in order to produce composite surface layers consisting of a TiO2 layer and an external carbon coating with an addition of silver. The produced surface layers a-C(Ag) + TiO2 type have shown increased surface roughness, improved corrosion resistance, altered wettability, and surface free energy, as well as reduced platelet adhesion, aggregation, and activation in comparison to NiTi alloy in initial state. Such characteristics can be of great benefit for cardiac applications.
Collapse
Affiliation(s)
- Justyna Witkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland.
| | - Agnieszka Sowińska
- Pathology Department, Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Elżbieta Czarnowska
- Pathology Department, Children's Memorial Health Institute, Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Tomasz Płociński
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Bogusław Rajchel
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Cracow, Poland
| | - Michał Tarnowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Tadeusz Wierzchoń
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| |
Collapse
|
3
|
The melding of nanomedicine in thrombosis imaging and treatment: a review. Future Sci OA 2016; 2:FSO113. [PMID: 28031960 PMCID: PMC5138016 DOI: 10.4155/fso.16.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 02/12/2016] [Indexed: 12/14/2022] Open
Abstract
Thromboembolic diseases constitute a plague in our century, wherein an imbalance of hemostasis leads to thrombus formation and vessels constriction reducing blood flow. Hence, the recent rise of nanomedicine gives birth to advanced diagnostic modalities and therapeutic agents for the early diagnosis and treatment of such diseases. Multimodal nanoagents for the detection of intravascular thrombi and nanovehicles for thrombus-targeted fibrinolytic therapy are few paradigms of nanomedicine approaches to overcome current diagnostic treatment roadblocks and persistent clinical needs. This review highlights the nanomedicine strategies to improve the imaging and therapy of acute thrombi by nanoparticles and nanotheranostics, the detailed imaging of thrombogenic proteins and platelets via atomic force microscopy with the knowledge basis of thrombosis pathophysiology and nanotoxicity. Lay abstract: The present review highlights the perspectives of nanomedicine in enhancing the diagnostic and therapeutic strategies to deal with thrombosis. The basics in thrombosis are highlighted to provide the reader with better comprehension of the application of nanotools and various multimodal nanocarriers for diagnosis, targeted therapy and monitoring of the disease. The visualization and treatment of acute thrombi using multifunctional nanoparticles and nanotheranostics, along with the structural investigation of the blood-clotting proteins exploiting the atomic force microscopy capabilities are comprehensively described. At the same time, toxicity and biocompatibility issues regarding nanoparticles are discussed.
Collapse
|
4
|
van Oeveren W. Obstacles in haemocompatibility testing. SCIENTIFICA 2013; 2013:392584. [PMID: 24278774 PMCID: PMC3820147 DOI: 10.1155/2013/392584] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
ISO 10993-4 is an international standard describing the methods of testing of medical devices for interactions with blood for regulatory purpose. The complexity of blood responses to biomaterial surfaces and the variability of blood functions in different individuals and species pose difficulties in standardisation. Moreover, in vivo or in vitro testing, as well as the clinical relevance of certain findings, is still matter of debate. This review deals with the major remaining problems, including a brief explanation of surface interactions with blood, the current ISO 10993 requirements for testing, and the role of in vitro test models. The literature is reviewed on anticoagulation, shear rate, blood-air interfaces, incubation time, and the importance of evaluation of the surface area after blood contact. Two test categories deserve further attention: complement and platelet function, including the effects on platelets from adhesion proteins, venipuncture, and animal derived- blood. The material properties, hydrophilicity, and roughness, as well as reference materials, are discussed. Finally this review calls for completing the acceptance criteria in the ISO standard based on a panel of test results.
Collapse
Affiliation(s)
- W. van Oeveren
- HaemoScan and Department of Cardiothoracic Surgery, UMCG Groningen, The Netherlands
| |
Collapse
|
5
|
Karagkiozaki V, Karagiannidis PG, Kalfagiannis N, Kavatzikidou P, Patsalas P, Georgiou D, Logothetidis S. Novel nanostructured biomaterials: implications for coronary stent thrombosis. Int J Nanomedicine 2012; 7:6063-76. [PMID: 23269867 PMCID: PMC3529651 DOI: 10.2147/ijn.s34320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell–material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. Objective and methods In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. Results The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.
Collapse
Affiliation(s)
- Varvara Karagkiozaki
- Lab for Thin Films - Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, Thessaloniki
| | | | | | | | | | | | | |
Collapse
|
6
|
Karagkiozaki V, Vavoulidis E, Karagiannidis PG, Gioti M, Fatouros DG, Vizirianakis IS, Logothetidis S. Development of a nanoporous and multilayer drug-delivery platform for medical implants. Int J Nanomedicine 2012; 7:5327-38. [PMID: 23071394 PMCID: PMC3469098 DOI: 10.2147/ijn.s31185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.
Collapse
Affiliation(s)
- Varvara Karagkiozaki
- Lab for Thin Films-Nanosystems and Nanometrology, Physics Department, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
7
|
Karagkiozaki VC, Logothetidis SD, Kassavetis SN, Giannoglou GD. Nanomedicine for the reduction of the thrombogenicity of stent coatings. Int J Nanomedicine 2010; 5:239-48. [PMID: 20463940 PMCID: PMC2865019 DOI: 10.2147/ijn.s7596] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Indexed: 11/24/2022] Open
Abstract
The treatment of patients with drug-eluting stents (DES) continues to evolve with the current emergence of DES technology that offers a combination of pharmacological and mechanical approaches to prevent arterial restenosis. However, despite the promising short-term and mid-term outcomes of DES, there are valid concerns about adverse clinical effects of late stent thrombosis. In this study, we present an example of how nanomedicine can offer solutions for improving stent coating manufacturing, by producing nanomaterials with tailored and controllable properties. The study is based on the exploitation of human platelets response towards carbon-based nanocoatings via atomic force microscope (AFM). AFM can facilitate the comprehensive analysis of platelets behavior onto stent nanocoatings and enable the study of thrombogenicity. Platelet-rich plasma from healthy donors was used for the real-time study of biointerfacial interactions. The carbon nanomaterials were developed by rf magnetron sputtering technique under controllable deposition conditions to provide favorable surface nanotopography. It was shown that by altering the surface topography of nanocoatings, the activation of platelets can be affected, while the carbon nanocoatings having higher surface roughness were found to be less thrombogenic in terms of platelets adhesion. This is an actual solution for improving the stent coating fabrication.
Collapse
Affiliation(s)
- Varvara C Karagkiozaki
- Aristotle University of Thessaloniki, Medical School, AHEPA University General Hospital, 1st Cardiology Department, Cardiovascular Engineering and Atherosclerosis Laboratory, Greece
| | | | | | | |
Collapse
|
8
|
Hidalgo JA, Montero-Ocampo C, Cuberes MT. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy. NANOSCALE RESEARCH LETTERS 2009; 4:1493-1501. [PMID: 20652153 PMCID: PMC2894194 DOI: 10.1007/s11671-009-9426-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/18/2009] [Indexed: 05/29/2023]
Abstract
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
Collapse
Affiliation(s)
- JA Hidalgo
- CINVESTAV-IPN, U. Saltillo, Apdo. Postal 663, 25900, Saltillo, Coahuila, Mexico
| | - C Montero-Ocampo
- CINVESTAV-IPN, U. Saltillo, Apdo. Postal 663, 25900, Saltillo, Coahuila, Mexico
| | - MT Cuberes
- Laboratory of Nanotechnology, University of Castilla-La Mancha, Pza. Manuel Meca 1, 13400, Almadén, Spain
| |
Collapse
|