1
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
2
|
Shahid A, Aslam B, Muzammil S, Aslam N, Shahid M, Almatroudi A, Allemailem KS, Saqalein M, Nisar MA, Rasool MH, Khurshid M. The prospects of antimicrobial coated medical implants. J Appl Biomater Funct Mater 2021; 19:22808000211040304. [PMID: 34409896 DOI: 10.1177/22808000211040304] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The implants are increasingly being a part of modern medicine in various surgical procedures for functional or cosmetic purposes. The progressive use of implants is associated with increased infectious complications and prevention of such infections always remains precedence in the clinical settings. The preventive approaches include the systemic administration of antimicrobial agents before and after the surgical procedures as well as the local application of antibiotics. The relevant literature and existing clinical practices have highlighted the role of antimicrobial coating approaches in the prevention of implants associated infections, although the applications of these strategies are not yet standardized, and the clinical efficacy is not much clear. The adequate data from the randomized control trials is challenging because of the unavailability of a large sample size although it is compulsory in this context to assess the clinical efficacy of preemptive practices. This review compares the efficacy of preventive approaches and the prospects of antimicrobial-coated implants in preventing implant-related infections.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Zhou L, Wong HM, Li QL. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite. Int J Nanomedicine 2020; 15:8963-8982. [PMID: 33223830 PMCID: PMC7671468 DOI: 10.2147/ijn.s281014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Quan Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei230000, People’s Republic of China
| |
Collapse
|
4
|
Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E847. [PMID: 30871195 PMCID: PMC6471903 DOI: 10.3390/ma12060847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Silicones are widely used medical materials that are also applied for tympanostomy tubes with a trending goal to functionalise the surface of the latter to enhance the healing of ear inflammations and other ear diseases, where such medical care is required. This study focuses on silicone surface treatment with various antimicrobial coatings. Polysaccharide coatings in the form of chitosan nanoparticles alone, or with an embedded drug mixture composed of amoxicillin/clavulanic acid (co-amoxiclav) were prepared and applied onto silicone material. Plasma activation was also used as a pre-treatment for activation of the material's surface for better adhesion of the coatings. The size of the nanoparticles was measured using the DLS method (Dynamic Light Scattering), stability of the dispersion was determined with zeta potential measurements, whilst the physicochemical properties of functionalised silicone materials were examined using the UV-Vis method (Ultraviolet-Visible Spectroscopy), SEM (Scanning Electron Microscopy), XPS (X-Ray Photoelectron Spectroscopy). Moreover, in vitro drug release testing was used to follow the desorption kinetics and antimicrobial properties were tested by a bacterial cell count reduction assay using the standard gram-positive bacteria Staphylococcus aureus. The results show silicone materials as suitable materials for tympanostomy tubes, with the coating developed in this study showing excellent antimicrobial and biofilm inhibition properties. This implies a potential for better healing of ear inflammation, making the newly developed approach for the preparation of functionalised tympanostomy tubes promising for further testing towards clinical applications.
Collapse
Affiliation(s)
- Urban Ajdnik
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova 17, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova 17, 2000 Maribor, Slovenia.
| | - Matej Bračič
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova 17, 2000 Maribor, Slovenia.
| | - Janez Rebol
- University Medical Centre Maribor, Department of Otorhinolaryngology, Cervical and Maxillofacial Surgery, Ljubljanska ulica 5, 2000 Maribor, Slovenia.
| |
Collapse
|
5
|
Kang M, Kim S, Kim H, Song Y, Jung D, Kang S, Seo JH, Nam S, Lee Y. Calcium-Binding Polymer-Coated Poly(lactide- co-glycolide) Microparticles for Sustained Release of Quorum Sensing Inhibitors to Prevent Biofilm Formation on Hydroxyapatite Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7686-7694. [PMID: 30768237 DOI: 10.1021/acsami.8b18301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quorum sensing (QS) inhibitor-based therapy is an attractive strategy to inhibit bacterial biofilm formation without excessive induction of antibiotic resistance. Thus, we designed Ca2+-binding poly(lactide- co-glycolide) (PLGA) microparticles that can maintain a sufficient concentration of QS inhibitors around hydroxyapatite (HA) surfaces in order to prevent biofilm formation on HA-based dental or bone tissues or implants and, therefore, subsequent pathogenesis. Poly(butyl methacrylate- co-methacryloyloxyethyl phosphate) (PBMP) contains both Ca2+-binding phosphomonoester groups and PLGA-interacting butyl groups. The PBMP-coated PLGA (PLGA/PBMP) microparticles exhibited superior adhesion to HA surfaces without altering the sustained release properties of uncoated PLGA microparticles. PLGA/PBMP microparticle-encapsulating furanone C-30, a representative QS inhibitor, effectively inhibited the growth of Streptococcus mutans and its ability to form biofilms on HA surface for prolonged periods of up to 100 h, which was much longer than either furanone C-30 in its free form or when encapsulated in noncoated PLGA microparticles.
Collapse
Affiliation(s)
- Minji Kang
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Sungwhan Kim
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Heejin Kim
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Dongwook Jung
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Sohee Nam
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences , Seoul National University , Gwanak-ro 1 , Gwanak-gu, Seoul 08826 , Republic of Korea
| |
Collapse
|
6
|
Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 2018; 102:2075-2089. [PMID: 29392390 DOI: 10.1007/s00253-018-8776-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/26/2023]
Abstract
Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.
Collapse
Affiliation(s)
- Arnau Bassegoda
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Eva Ramon
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain.
| |
Collapse
|
7
|
Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, Xu C, Wang P. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine 2017; 12:5915-5931. [PMID: 28860757 PMCID: PMC5566361 DOI: 10.2147/ijn.s138185] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and objectives Antibiotic resistance has emerged as one of the most important determinants of outcome in patients with serious infections, along with the virulence of the underlying pathogen. Photodynamic antimicrobial chemotherapy (PACT) has been proposed as an alternative approach for the inactivation of bacteria. This study aims to evaluate the antibacterial effect of sinoporphyrin sodium (DVDMS)-mediated PACT on Staphylococcus aureus and multidrug resistant S. aureus in vitro and in vivo. Materials and methods Bacteria were incubated with DVDMS and exposed to treatment with light. After PACT treatment, colony-forming units were counted to estimate the bactericidal effect. Intracellular reactive oxygen-species production was detected by flow cytometry. Flow cytometry and fluorescence-microscopy detection of bacterial cell-membrane permeability. Enzyme-linked immunosorbent assays were used to determine expression of VEGF, TGFβ1, TNFα, IL6, and bFGF factors in burn infection. Results DVDMS-PACT effectively killed bacterial proliferation. Intracellular ROS levels were enhanced obviously in the PACT-treatment group. SYTO 9 and propidium iodide staining showed a decrease in the ratio of green:red fluorescence intensity in the PACT-treatment group in comparison to the control group. Enzyme-linked immunosorbent-assay results revealed that in the healing process, the expression of bFGF, TGFβ1, and VEGF in the treatment group were higher than in the control group, which inhibited inflammation-factor secretion. In addition, skin-tissue bacteria were reduced after treatment. Conclusion These results indicate that DVDMS-PACT presents significant bactericidal activity and promotes wound healing after burn infections.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Yiru Gao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Min Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education.,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an
| |
Collapse
|
8
|
Wang J, Wu G, Liu X, Sun G, Li D, Wei H. A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int J Nanomedicine 2017; 12:371-379. [PMID: 28123297 PMCID: PMC5229168 DOI: 10.2147/ijn.s123622] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although percutaneous titanium implants have become one of the best choices as retainers in the facial defects, peri-implantitis still occurs at a significant rate. This unwanted complication occurs due to adhesion of bacteria and subsequent biofilm formation. To solve this problem, we have developed a novel antibiotic nanodelivery system based on self-decomposable silica nanoparticles. In this study, silica-gentamycin (SG) nanoparticles were successfully fabricated using an innovative one-pot solution. The nanoparticles were incorporated within a gelatin matrix and cross-linked on microarc-oxidized titanium. To characterize the SG nanoparticles, their particle size, zeta potential, surface morphology, in vitro drug release, and decomposition process were sequentially evaluated. The antibacterial properties against the gram-positive Staphylococcus aureus, including bacterial viability, antibacterial rate, and bacteria morphology, were analyzed using SG-loaded titanium specimens. Any possible influence of released gentamycin on the viability of human fibroblasts, which are the main component of soft tissues, was investigated. SG nanoparticles from the antibacterial titanium coating continuously released gentamycin and inhibited S. aureus growth. In vitro investigation showed that the obtained nanodelivery system has good biocompatibility. Therefore, this design can be further investigated as a method to prevent infection around percutaneous implants.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an
| | - Guofeng Wu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing
| | - Xiangwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Guanyang Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an
| | - Dehua Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
9
|
Cheng Y, Gao B, Liu X, Zhao X, Sun W, Ren H, Wu J. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Int J Nanomedicine 2016; 11:1337-47. [PMID: 27099494 PMCID: PMC4821396 DOI: 10.2147/ijn.s100763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs’ mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (P<0.05), and the bone–implant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (P<0.05). Scanning electron microscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.
Collapse
Affiliation(s)
- Yicheng Cheng
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; Department of Stomatology, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China; Department of Prosthodontics, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Bo Gao
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; Department of Prosthodontics, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Xianghui Liu
- Department of Stomatology, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xianghui Zhao
- Institute of Neuroscience, School of Basical Medical Science, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Weige Sun
- Department of Stomatology, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Huifang Ren
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; Department of Prosthodontics, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| | - Jiang Wu
- Department of Prosthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; Department of Prosthodontics, Shaanxi Key Laboratory of Stomatology, Xi'an, People's Republic of China
| |
Collapse
|
10
|
Wang Z, Wu G, Feng Z, Bai S, Dong Y, Wu G, Zhao Y. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells. Int J Nanomedicine 2015; 10:6675-87. [PMID: 26604744 PMCID: PMC4630184 DOI: 10.2147/ijn.s94689] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.
Collapse
Affiliation(s)
- Zhongshan Wang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Guangsheng Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China ; Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, People's Republic of China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Dong
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Guofeng Wu
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, The Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Sustained Release of a Purified Tannin Component of Terminalia chebula from a Titanium Implant Surface Prevents Biofilm Formation by Staphylococcus aureus. Appl Biochem Biotechnol 2015; 175:3542-56. [DOI: 10.1007/s12010-015-1525-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
|
12
|
Cheng Y, Zhao X, Liu X, Sun W, Ren H, Gao B, Wu J. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium. Int J Nanomedicine 2015; 10:727-37. [PMID: 25632231 PMCID: PMC4304594 DOI: 10.2147/ijn.s75706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection.
Collapse
Affiliation(s)
- Yicheng Cheng
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China ; Department of Stomatology, Jingdu Hospital, Nanjing, People's Republic of China
| | - Xianghui Zhao
- Institute of Neuroscience, School of Basic Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xianghui Liu
- Department of Stomatology, Jingdu Hospital, Nanjing, People's Republic of China
| | - Weige Sun
- Department of Stomatology, Jingdu Hospital, Nanjing, People's Republic of China
| | - Huifang Ren
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bo Gao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiang Wu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Deng Z, Yin B, Li W, Liu J, Yang J, Zheng T, Zhang D, Yu H, Liu X, Ma J. Surface characteristics of and in vitro behavior of osteoblast-like cells on titanium with nanotopography prepared by high-energy shot peening. Int J Nanomedicine 2014; 9:5565-73. [PMID: 25489244 PMCID: PMC4257054 DOI: 10.2147/ijn.s71625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND METHODS Commercial pure titanium with nanotopography was prepared via a high-energy shot-peening (HESP) technique. The surface characteristics were evaluated, and the preliminary cell responses to the nanotopographical surface were investigated. RESULTS The nanotopographical surface layer on titanium was successfully processed by HESP. The average nanoscale grains were approximately 60 nm in diameter and they were nonhomogeneously distributed on the surface. MG-63 cells with an osteogenic phenotype were well adhered and well spread on the nanostructured surface. Compared to the original polished control, the nanotopographical surface highly improved the adhesion, viability, and differentiation of MG-63 cells. CONCLUSION Titanium with nanotopography achieved by HESP has good cytocompatibility and shows promise for dental implant applications.
Collapse
Affiliation(s)
- Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Baodi Yin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Weihong Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingyuan Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Tieli Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Dafeng Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoguang Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianfeng Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|