1
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Anitua E, Zalduendo M, Tierno R, Alkhraisat MH. Plasma Rich in Growth Factors in Bone Regeneration: The Proximity to the Clot as a Differential Factor in Osteoblast Cell Behaviour. Dent J (Basel) 2024; 12:122. [PMID: 38786520 PMCID: PMC11119057 DOI: 10.3390/dj12050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The osteogenic differentiation process, by which bone marrow mesenchymal stem cells and osteoprogenitors transform into osteoblasts, is regulated by several growth factors, cytokines, and hormones. Plasma Rich in Growth Factors (PRGF) is a blood-derived preparation consisting of a plethora of bioactive molecules, also susceptible to containing epigenetic factors such as ncRNAs and EVs, that stimulates tissue regeneration. The aim of this study was to investigate the effect of the PRGF clot formulation on osteogenic differentiation. Firstly, osteoblast cells were isolated and characterised. The proliferation of bone cells cultured onto PRGF clots or treated with PRGF supernatant was determined. Moreover, the gene expression of Runx2 (ID: 860), SP7 (ID: 121340), and ALPL (ID: 249) was analysed by one-step real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, alkaline phosphatase (ALPL) activity determination was performed. The highest proliferative effect was achieved by the PRGF supernatant in all the study periods analysed. Concerning gene expression, the logRGE of Runx2 increased significantly in osteoblasts cultured with PRGF formulations compared with the control group, while that of SP7 increased significantly in osteoblasts grown on the PRGF clots. On the other hand, despite the fact that the PRGF supernatant induced ALPL up-regulation, significantly higher enzyme activity was detected for the PRGF clots in comparison with the supernatant formulation. According to our results, contact with the PRGF clot could promote a more advanced phase in the osteogenic process, associated to higher levels of ALPL activity. Furthermore, the PRGF clot releasate stimulated a higher proliferation rate in addition to reduced SP7 expression in the cells located at a distant ubication, leading to a less mature osteoblast stage. Thus, the spatial relationship between the PRGF clot and the osteoprogenitors cells could be a factor that influences regenerative outcomes.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
3
|
Sahoo RK, Tripathi SK, Biswal S, Panda M, Mathapati SS, Biswal BK. Transforming native exosomes to engineered drug vehicles: A smart solution to modern cancer theranostics. Biotechnol J 2024; 19:e2300370. [PMID: 38375578 DOI: 10.1002/biot.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Exosomes have been the hidden treasure of the cell in terms of cellular interactions, transportation and therapy. The native exosomes (NEx) secreted by the parent cells hold promising aspects in cancer diagnosis and therapy. NEx has low immunogenicity, high biocompatibility, low toxicity and high stability which enables them to be an ideal prognostic biomarker in cancer diagnosis. However, due to heterogeneity, NEx lacks specificity and accuracy to be used as therapeutic drug delivery vehicle in cancer therapy. Transforming these NEx with their innate structure and multiple receptors to engineered exosomes (EEx) can provide better opportunities in the field of cancer theranostics. The surface of the NEx exhibits numeric receptors which can be modified to pave the direction of its therapeutic drug delivery in cancer therapy. Through surface membrane, EEx can be modified with increased drug loading potentiality and higher target specificity to act as a therapeutic nanocarrier for drug delivery. This review provides insights into promising aspects of NEx as a prognostic biomarker and drug delivery tool along with its need for the transformation to EEx in cancer theranostics. We have also highlighted different methods associated with NEx transformations, their nano-bio interaction with recipient cells and major challenges of EEx for clinical application in cancer theranostics.
Collapse
Affiliation(s)
- Rajeev Kumar Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Surya Kant Tripathi
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Santosh S Mathapati
- Translational Health Science and Technology Institute Faridabad, Faridabad, Haryana, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
4
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
5
|
Rody WJ, Reuter NG, Brooks SE, Hammadi LI, Martin ML, Cagmat JG, Garrett TJ, Holliday LS. Metabolomic signatures distinguish extracellular vesicles from osteoclasts and odontoclasts. Orthod Craniofac Res 2023; 26:632-641. [PMID: 36997279 PMCID: PMC10542960 DOI: 10.1111/ocr.12658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
AIMS Pathological dental root resorption and alveolar bone loss are often detected only after irreversible damage. Biomarkers in the gingival crevicular fluid or saliva could provide a means for early detection; however, such biomarkers have proven elusive. We hypothesize that a multiomic approach might yield reliable diagnostic signatures for root resorption and alveolar bone loss. Previously, we showed that extracellular vesicles (EVs) from osteoclasts and odontoclasts differ in their protein composition. In this study, we investigated the metabolome of EVs from osteoclasts, odontoclasts and clasts (non-resorbing clastic cells). MATERIALS AND METHODS Mouse haematopoietic precursors were cultured on dentine, bone or plastic, in the presence of recombinant RANKL and CSF-1 to trigger differentiation along the clastic line. On Day 7, the cells were fixed and the differentiation state and resorptive status of the clastic cells were confirmed. EVs were isolated from the conditioned media on Day 7 and characterized by nanoparticle tracking and electron microscopy to ensure quality. Global metabolomic profiling was performed using a Thermo Q-Exactive Orbitrap mass spectrometer with a Dionex UHPLC and autosampler. RESULTS We identified 978 metabolites in clastic EVs. Of those, 79 are potential biomarkers with Variable Interdependent Parameters scores of 2 or greater. Known metabolites cytidine, isocytosine, thymine, succinate and citrulline were found at statistically higher levels in EVs from odontoclasts compared with osteoclasts. CONCLUSION We conclude that numerous metabolites found in odontoclast EVs differ from those in osteoclast EVs, and thus represent potential biomarkers for root resorption and periodontal tissue destruction.
Collapse
Affiliation(s)
- Wellington J Rody
- Department of Orthodontics and Dentofacial Orthopedics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | - Nathan G Reuter
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Shannen E Brooks
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Lina I Hammadi
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Macey L Martin
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
| | - Joy G Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, 32610, USA
- Department of Anatomy & Cell Biology, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
6
|
Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering (Basel) 2023; 10:1252. [PMID: 38002376 PMCID: PMC10669014 DOI: 10.3390/bioengineering10111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The management of critical-sized bone defects caused by nonunion, trauma, infection, malignancy, pseudoarthrosis, and osteolysis poses complex reconstruction challenges for orthopedic surgeons. Current treatment modalities, including autograft, allograft, and distraction osteogenesis, are insufficient for the diverse range of pathology encountered in clinical practice, with significant complications associated with each. Therefore, there is significant interest in the development of delivery vehicles for growth factors to aid in bone repair in these settings. This article reviews innovative strategies for the management of critical-sized bone loss, including novel scaffolds designed for controlled release of rhBMP, bioengineered extracellular vesicles for delivery of intracellular signaling molecules, and advances in regional gene therapy for sustained signaling strategies. Improvement in the delivery of growth factors to areas of significant bone loss has the potential to revolutionize current treatment for this complex clinical challenge.
Collapse
Affiliation(s)
- Jacob R. Ball
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, 1500 San Pablo St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
7
|
Ren Y, Kong W, Liu Y, Yang X, Xu X, Qiang L, Mi X, Zhang C, Niu H, Wang C, Wang J. Photocurable 3D-Printed PMBG/TCP Scaffold Coordinated with PTH (1-34) Bidirectionally Regulates Bone Homeostasis to Accelerate Bone Regeneration. Adv Healthc Mater 2023; 12:e2300292. [PMID: 37354129 DOI: 10.1002/adhm.202300292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Bone defect repair remains a major clinical challenge that requires the construction of scaffolds that can regulate bone homeostasis. In this study, a photo-cured mesoporous bioactive glass (PMBG) precursor is developed as a tricalcium phosphate (TCP) agglomerant to obtain a double-phase PMBG/TCP scaffold via 3D printing. The scaffold exhibits multi-scale porous structures and large surface areas, making it a suitable carrier for the loading of parathyroid hormone (PTH) (1-34), which is used for the treatment of osteoporosis. In vitro and in vivo results demonstrate that PMBG/TCP scaffolds coordinated with PTH (1-34) can regulate bone homeostasis in a bidirectional manner to facilitate bone formation and inhibit bone resorption. Furthermore, bidirectional regulation of bone homeostasis by PTH (1-34) is achieved by inhibiting fibrogenic activation protein (FAP). Thus, PMBG/TCP scaffolds coordinated with PTH (1-34) are viable materials with considerable potential for application in the field of bone regeneration and provide an excellent solution for the design and development of clinical materials.
Collapse
Affiliation(s)
- Ya Ren
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, P. R. China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xue Yang
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Xiang Xu
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelian Mi
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 DongChuan Road, Shanghai, 200240, P. R. China
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
- Shanghai Beierkang Biomedical Technology Co. LTD, No. 515 Shennan Rd, Shanghai, 201108, P. R. China
| | - Jinwu Wang
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
8
|
Maqui Berry and Ginseng Extracts Reduce Cigarette Smoke-Induced Cell Injury in a 3D Bone Co-Culture Model. Antioxidants (Basel) 2022; 11:antiox11122460. [PMID: 36552669 PMCID: PMC9774157 DOI: 10.3390/antiox11122460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoking-induced oxidative stress has harmful effects on bone metabolism. Maqui berry extract (MBE) and ginseng extract (GE) are two naturally occurring antioxidants that have been shown to reduce oxidative stress. By using an osteoblast and osteoclast three-dimensional co-culture system, we investigated the effects of MBE and GE on bone cells exposed to cigarette smoke extract (CSE). The cell viability and function of the co-culture system were measured on day 14. Markers of bone cell differentiation and oxidative stress were evaluated at gene and protein levels on day 7. The results showed that exposure to CSE induced osteoporotic-like alterations in the co-culture system, while 1.5 µg/mL MBE and 50 µg/mL GE improved CSE-impaired osteoblast function and decreased CSE-induced osteoclast function. The molecular mechanism of MBE and GE in preventing CSE-induced bone cell damage is linked with the inhibition of the NF-κB signaling pathway and the activation of the Nrf2 signaling pathway. Therefore, MBE and GE can reduce CSE-induced detrimental effects on bone cells and, thus, prevent smoking-induced alterations in bone cell homeostasis. These two antioxidants are thus suitable supplements to support bone regeneration in smokers.
Collapse
|