1
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
2
|
Xu X, Yuan H, Lv Q, Wu Z, Fan W, Liu J. Indoleamine 2, 3-dioxygenase Regulates the Differentiation of T Lymphocytes to Promote the Growth of Gastric Cancer Cells through the PI3K/Akt/mTOR Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01641-x. [PMID: 39695014 DOI: 10.1007/s12013-024-01641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
To investigate the regulatory mechanism of indoleamine 2, 3-dioxygenase (IDO) in T lymphocyte differentiation and its role in promoting the growth of gastric cancer (GC) cells through the PI3K/Akt/mTOR pathway. GC cell lines (MFC and NCI-N87) and PBMC cells were co-cultured and IDO inhibitor 1-methyl-tryptophan (1-MT) was added. The proliferation was detected by CCK-8, the apoptosis was detected by flow cytometry, and the contents of TNF-α, IL-1β, IL-6, IL-8, and INF-γ were detected by ELISA. The expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR were tested using Western blot, and the proportion of CD4+/CD8+, CD4+CD25+Foxp3+Treg cells was detected by flow cytometry. C57BL/6 mice were used to establish the MFC GC mouse model and treated with 1-MT. The changes in body weight and tumor diameter were measured. Ki-67, CD4+, CD8+, and CD25+ expressions were detected by immunohistochemistry. IDO promoted the proliferation of MFC and NCI-N87 cells, inhibited apoptosis, and decreased the levels of TNF-α, IL-1β, IL-6, IL-8, and INF-γ in the supernatant after co-culture with BPMC. The expressions of p-AKT, p-mTOR, and p-PI3K increased after 1-MT treatment. The proportion of CD4+/CD8+ cells was increased and the proportion of Treg cells was decreased in PBMC cells after the addition of 1-MT. Overexpression of IDO suppressed T cells differentiation by inhibiting the PI3K/Akt/mTOR pathway. In vivo, 1-MT treatment reduced the tumor size and weight, increased CD4+ and CD8+ positive area proportion, and decreased Ki-67 and CD25+ positive area proportion. Co-culture of GC cells and immune cells promotes the proliferation of GC cells and inhibits apoptosis, which can be reversed by 1-MT. IDO may suppress the proliferation of T lymphocyte through inhibiting the PI3K/Akt/mTOR signaling pathway. This provides new evidence for the potential of exploiting IDO inhibitors for GC treatment.
Collapse
Affiliation(s)
- Xiulian Xu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huayan Yuan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qijun Lv
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenjiang Wu
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wenhai Fan
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianjun Liu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
3
|
Ma J, Hua L, Zhu Y, Mao G, Fu C, Qin S. Photo-Thermally Controllable Tumor Metabolic Modulation to Assist T Cell Activation for Boosting Immunotherapy. Int J Nanomedicine 2024; 19:11181-11194. [PMID: 39513087 PMCID: PMC11542477 DOI: 10.2147/ijn.s483815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Background Glycolysis is crucial for tumor cell proliferation, supporting their energy needs and influencing the tumor microenvironment (TME). On one hand, increased lactate levels produced by glycolysis acidifies the TME, inhibiting T cell activity. On the other hand, glycolysis promotes the expression of PD-L1 through various mechanisms, facilitating immune evasion. Therefore, controlled modulation of glycolysis in tumor cells to subsequently improve the immune tumor microenvironment holds significant implications for clinical cancer treatment and immune regulation. Methods To reverse the immunosuppressive microenvironment caused by tumor glycolysis and reduce tumor immune escape, we developed a photo-thermal-controlled precision drug delivery platform to regulate tumor metabolism and aid in the activation of T cells, thereby enhancing immunotherapy. First, hollow mesoporous Prussian blue (HPB) was prepared, and the glycolysis inhibitor 3-bromopyruvate (3-BrPA) was encapsulated within HPB using the phase-change material 1-tetradecanol, resulting in B/T-H. This product was then modified with tumor cell membranes to obtain a photo-thermal controllable regulator (B/T-H@Membrane, B/T-HM). Results Due to the excellent drug loading and photo-thermal properties of HPB, upon reaching the tumor, B/T-HM can rapidly heat under 808 nm irradiation, causing the 1-tetradecanol to transition to a liquid phase and release 3-BrPA, which effectively inhibits tumor glycolysis through the HK2 pathway, thereby reducing tumor cell proliferation, decreasing lactate production, and downregulating tumor PD-L1 expression. In synergy with photo-thermal and αPD-1, this photo-thermally controllable metabolic-immune therapy effectively activates T cells to eliminate tumor. Conclusion In response to the changes in immune microenvironment caused by tumor metabolism, a photo-thermal precision-controlled drug delivery platform was successfully developed. This platform reshapes the tumor immunosuppressive microenvironment, providing a new approach for T cell-based tumor immunotherapy. It also opens new avenues for photo-thermal controllable metabolic-immune therapy.
Collapse
Affiliation(s)
- Jun Ma
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Lixin Hua
- Department of General Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People’s Hospital, Wuxi, People’s Republic of China
| | - Yinxing Zhu
- Department of Traditional Chinese Medicines, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, People’s Republic of China
| | - Guangyao Mao
- Institute of Clinical Medicine, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Chunsheng Fu
- Institute of Clinical Medicine, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Shiyue Qin
- Department of Ophthalmology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| |
Collapse
|
4
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Lin Q, Wang Y, Wang L, Fan Z. Engineered macrophage-derived cellular vesicles for NIR-II fluorescence imaging-guided precise cancer photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 235:113770. [PMID: 38330689 DOI: 10.1016/j.colsurfb.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Significant progress has been made in cancer immunotherapy; however, challenges such as interpatient variability, limited treatment response, and severe side effects persist. Although nanoimmunotherapy has emerged as a promising approach, the construction of precise and efficient nanosystems remain formidable challenges. Herein, a multifunctional nanoplatform was developed using macrophage-derived cellular vesicles (MCVs) for NIR-II imaging-guided precise cancer photo-immunotherapy. MCVs exhibited excellent tumor targeting and TAMs re-education effects, serving as both delivery carriers and therapeutic agents. Through amide bond, indocyanine green (ICG) was conjugated to the surface of MCVs, enabling in vivo tracking of MCVs distribution. Notably, ICG exhibited dual functionality as a NIR-II fluorescent agent and possessed photodynamic and photothermal effects, enabling the conversion of light energy into chemical or heat energy to eliminate tumor cells. This precision phototherapy triggered immunogenic cell death (ICD) of tumor, thereby activating the anti-tumor immune response. Additionally, MCVs loaded with R848, a toll-like receptor agonist, augmented the ICD-induced anti-tumor immunity. Animal experiments confirmed that MCVs-mediated photoimmunotherapy promoted T cell infiltration, inhibited tumor growth, and improved survival rates. In conclusion, we have developed a promising precision immunotherapy strategy capable of enhancing the immune response while mitigating off-target effects. These findings offer encouraging prospects for clinical translation.
Collapse
Affiliation(s)
- Quanshi Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China.
| | - Linlin Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Sedky NK, Fawzy IM, Hassan A, Mahdy NK, Attia RT, Shamma SN, Alfaifi MY, Elbehairi SE, Mokhtar FA, Fahmy SA. Innovative microwave-assisted biosynthesis of copper oxide nanoparticles loaded with platinum(ii) based complex for halting colon cancer: cellular, molecular, and computational investigations. RSC Adv 2024; 14:4005-4024. [PMID: 38288146 PMCID: PMC10823359 DOI: 10.1039/d3ra08779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
In the current study, we biosynthesized copper oxide NPs (CuO NPs) utilizing the essential oils extracted from Boswellia carterii oleogum resin, which served as a bioreductant and capping agent with the help of microwave energy. Afterwards, the platinum(ii) based anticancer drug, carboplatin (Cr), was loaded onto the CuO NPs, exploiting the electrostatic interactions forming Cr@CuO NPs. The produced biogenic NPs were then characterized using zeta potential (ZP), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. In addition, the entrapment efficiency and release profile of the loaded Cr were evaluated. Thereafter, SRB assay was performed, where Cr@CuO NPs demonstrated the highest cytotoxic activity against human colon cancer cells (HCT-116) with an IC50 of 5.17 μg mL-1, which was about 1.6 and 2.2 folds more than that of Cr and CuO NPs. Moreover, the greenly synthesized nanoparticles (Cr@CuO NPs) displayed a satisfactory selectivity index (SI = 6.82), which was far better than the free Cr treatment (SI = 2.23). Regarding the apoptosis assay, the advent of Cr@CuO NPs resulted in an immense increase in the cellular population percentage of HCT-116 cells undergoing both early (16.02%) and late apoptosis (35.66%), significantly surpassing free Cr and CuO NPs. A study of HCT-116 cell cycle kinetics revealed the powerful ability of Cr@CuO NPs to trap cells in the Sub-G1 and G2 phases and impede the G2/M transition. RT-qPCR was utilized for molecular investigations of the pro-apoptotic (Bax and p53) and antiapoptotic genes (Bcl-2). The novel Cr@CuO NPs treatment rose above single Cr or CuO NPs therapy in stimulating the p53-Bax mediated mitochondrial apoptosis. The cellular and molecular biology investigations presented substantial proof of the potentiated anticancer activity of Cr@CuO NPs and the extra benefits that could be obtained from their use.
Collapse
Affiliation(s)
- Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology Giza 12578 Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street 11562 Cairo Egypt
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Samir N Shamma
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Serag Eldin Elbehairi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University El Saleheya El Gadida Sharkia 44813 Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| |
Collapse
|
7
|
He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-Guided Photoacoustic Immunotherapy Based on the Polydopamine-Functionalized Black Phosphorus Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54322-54334. [PMID: 37967339 DOI: 10.1021/acsami.3c13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.
Collapse
Affiliation(s)
- Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Ning Liu
- School of Clinical Medicine, Jining Medical University, 272067 Jining, Shandong, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| |
Collapse
|