1
|
Han X, Xu R, Xia Y, Liu Y, Chen S, Shi M, Zou Z, Liang Y, Chen T, Tang Y, Tang W, Li X, Zhou L. Self-Assembled EGCG Nanoparticles with Enhanced Intracellular ROS Scavenging for Skin Radioprotection. Int J Nanomedicine 2024; 19:13135-13148. [PMID: 39670199 PMCID: PMC11634790 DOI: 10.2147/ijn.s488632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose Skin radiation damage is a prevalent form of tissue injury encountered during radiotherapy, radiation accidents, and occupational exposure. The only clinically approved radioprotective agent, amifostine, is associated with numerous side effects, underscoring the urgent need for the development of safe and effective radioprotective agents. Natural products with reductive properties possess high antioxidant activity and biocompatibility, but their low bioavailability limits their radioprotective efficacy and clinical application. To address this, we utilized epigallocatechin gallate (EGCG) as a model compound and employed nanotechnology to enhance cellular uptake of natural compounds, thereby improving their free radical scavenging capabilities. Methods EGCG nanoparticles (EGCG NPs) with robust intracellular reactive oxygen species (ROS) scavenging ability were prepared via self-assembly. The morphology, size distribution, and antioxidant capacity of EGCG NPs were characterized. Cytocompatibility, intracellular ROS levels and DNA damage, cell migration and immune response of EGCG NPs to macrophages were tested in vitro. The in vivo radiation protection and biocompatibility of EGCG NPs were assessed in murine model. Results The EGCG NPs was successfully prepared and compared to free EGCG, EGCG NPs demonstrated better cellular uptake, significantly enhancing their biocompatibility, intracellular ROS scavenging capacity, and ability to mitigate DNA damage. Furthermore, EGCG NPs facilitated fibroblast proliferation and migration, while inhibiting the polarization of macrophages towards the M1 phenotype in vitro. In animal levels, EGCG NPs exhibited markedly improved radioprotective efficacy over free EGCG, effectively reducing skin edema and ulceration, alleviating pathological conditions such as interstitial edema, dermal fluid accumulation, and inflammatory infiltration, decreasing the duration of skin injury, and promoting wound healing. Conclusion This work offers novel insights into the therapeutic application of EGCG NPs as a potential alternative for skin radioprotection and provides a powerful approach for developing radioprotective agents derived from natural products.
Collapse
Affiliation(s)
- Xiaowen Han
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Ruiling Xu
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Yang Xia
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Ying Liu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621907, People’s Republic of China
| | - Shan Chen
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621907, People’s Republic of China
| | - Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Yuanyuan Liang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Tingting Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621907, People’s Republic of China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
| | - Liangxue Zhou
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People’s Republic of China
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Neurosurgery, the Fifth People’s Hospital of Ningxia, Shizuishan, Ningxia, 753000, People’s Republic of China
| |
Collapse
|
2
|
Li J, Li Y, Shang X, Xu S, Zhang Z, Xu S, Wang X, Shen M. Therapeutic framework nucleic acid complexes targeting oxidative stress and pyroptosis for the treatment of osteoarthritis. Mater Today Bio 2024; 28:101202. [PMID: 39280111 PMCID: PMC11399809 DOI: 10.1016/j.mtbio.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases and severely affects the quality of life in the elderly population. However, there are currently no effective prevention or treatment options for OA. Oxidative stress and pyroptosis play significant roles in the development and progression of OA. To address this issue, we have developed a novel therapeutic approach for OA that targets oxidative stress and pyroptosis. We synthesized tetrahedral framework nucleic acid (tFNAs) to form framework nucleic acid complexes (TNCs), which facilitate the delivery of the naturally occurring polymethoxyflavonoid nobiletin (Nob) to chondrocytes. TNC has demonstrated favorable bioavailability, stability, and biosafety for delivering Nob. Both in vitro and in vivo experiments have shown that TNC can alleviate OA and protect articular cartilage from damage by eliminating oxidative stress, inhibiting pyroptosis, and restoring the extracellular matrix anabolic metabolism of chondrocytes. These findings suggest that TNC has significant potential in the treatment of OA and cartilage injury.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Sheng Xu
- Department of Orthopedics, People's Hospital of Changshan County, Quzhou, China
| | - Zhen Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| | - Miaoda Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, China
| |
Collapse
|
3
|
Cheng Y, Feng S, Sheng C, Yang C, Li Y. Nobiletin from citrus peel: a promising therapeutic agent for liver disease-pharmacological characteristics, mechanisms, and potential applications. Front Pharmacol 2024; 15:1354809. [PMID: 38487166 PMCID: PMC10938404 DOI: 10.3389/fphar.2024.1354809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yongkang Cheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sansan Feng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuqiao Sheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|