1
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
2
|
Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol 2023; 11:1246974. [PMID: 37600322 PMCID: PMC10436511 DOI: 10.3389/fbioe.2023.1246974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The eye, being one of the most intricate organs in the human body, hosts numerous anatomical barriers and clearance mechanisms. This highlights the importance of devising a secure and efficacious ocular medication delivery system. Over the past several decades, advancements have been made in the development of a nano-delivery platform based on polymeric micelles. These advancements encompass diverse innovations such as poloxamer, chitosan, hydrogel-encapsulated micelles, and contact lenses embedded with micelles. Such technological evolutions allow for sustained medication retention and facilitate enhanced permeation within the eye, thereby standing as the avant-garde in ocular medication technology. This review provides a comprehensive consolidation of ocular medications predicated on polymer nanomicelles from 2014 to 2023. Additionally, it explores the challenges they pose in clinical applications, a discussion intended to aid the design of future clinical research concerning ocular medication delivery formulations.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Ling Zhang
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Hao Chi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. Curr Drug Metab 2022; 23:869-881. [PMID: 36065928 DOI: 10.2174/1389200223666220905162245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Global cancer statistics defines the severity of disease even after significant research worldwide. PROBLEM Failure of the currently available treatment approaches, including surgery, radiation therapy and traditional chemotherapy. AIM The aim of this review is to discuss the role of phytochemical based nano-formulations for treatment of cancer. DISCUSSION In the past few decades, phytochemicals have gained popularity for acting as a potential anticancer treatment with low systemic toxicity, especially in terms of cell cycle control and cancer cell killing. Natural resources, with their immense structural variety, serve as a vital source of fresh, therapeutically useful new chemical entities for the treatment of cancer. Vinca alkaloids (VCR), vinblastine, vindesine, vinorelbine, taxanes (PTX), podophyllotoxin and its derivatives (etoposide (ETP), teniposide, camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, as natural products or their derivatives account for half of all anticancer drugs approved worldwide, and they have been developed utilising the knowledge learned from the natural small molecules or macromolecules. Trabectedin, an epothilone derivative, ixabepilone, and temsirolimus, three new anticancer medications launched in 2007, were derived from microbial origins. Current therapy regimens require selective drug targeting to enhance efficacy against cancer cells while normal cells remain unharmed. Modified medications and systems for drug delivery based on nanotechnology are in the process of being explored and launched in the industry for enhanced therapy and management of cancer, along with promising outcomes. Many obstacles related to cancer cell drug delivery can be overcome by using nano-particulate drug carriers, including enhancing the stability and solubility of the drug, prolonging half-lives of the drug in the blood, decreasing side effects to undesired organs, and increasing medication concentration at the desired site. The scientific initiatives and studies concerning the use of nanotechnology for some selective compounds derived from plants are discussed in this review article. CONCLUSION The present review highlights the phytochemical-based nanoformulations and their strategies in the development of novel systems of drug delivery such as nano-liposomes, functionalized nanoparticles (NPs), and polymer nano-conjugates, SNEDDS (Self nano emulsifying drug delivery system) as this review paper depicts, as well as their rewards over conventional systems of drug delivery, as evidenced by improved biological activity depicted in their in vitro and in vivo anticancer assays.
Collapse
Affiliation(s)
- Aman Upaganlawar
- SNJBs SSDJ College of Pharmacy, Neminagar, Chandwad, Maharashtra, India
| | - Satish Polshettiwar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Sushil Raut
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune-India
| | - Amol Tagalpallewar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Vishal Pande
- N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India
| |
Collapse
|
4
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
6
|
Sumitha N, Prakash P, Nair BN, Sailaja GS. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS OMEGA 2021; 6:21472-21484. [PMID: 34471750 PMCID: PMC8388080 DOI: 10.1021/acsomega.1c02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Glyoxal cross-linked porous magnetic chitosan microspheres, GMS (∼170 μm size), with a tunable degradation profile were synthesized by a water-in-oil emulsion technique to accomplish controlled delivery of doxorubicin (DOX), a chemotherapeutic drug, to ensure prolonged chemotherapeutic effects. The GMS exhibit superparamagnetism with saturation magnetization, M s = 7.2 emu g-1. The in vitro swelling and degradation results demonstrate that a swelling plateau of GMS is reached at 24 h, while degradation can be modulated to begin at 96-120 h by formulating the cross-linked network using glyoxal. MTT assay, live/dead staining, and F-actin staining (actin/DAPI) validated the cytocompatibility of GMS, which further assured good drug loading capacity (35.8%). The release mechanism has two stages, initiated by diffusion-inspired release of DOX through the swollen polymer network (72 h), which is followed by a disintegration-tuned release profile (>96 h) conferring GMS a potential candidate for DOX delivery.
Collapse
Affiliation(s)
- Nechikkottil
Sivadasan Sumitha
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
| | - Prabha Prakash
- Department
of Biotechnology, Cochin University of Science
and Technology, Kochi 682 022, Kerala, India
| | - Balagopal N. Nair
- School
of Molecular and Life Sciences (MLS), Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth WA6845, Australia
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Inter
University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Centre
for Excellence in Advanced Materials, Cochin
University of Science and Technology, Kochi 682 022, Kerala, India
| |
Collapse
|
7
|
Rehman S, Almessiere MA, Al-Jameel SS, Ali U, Slimani Y, Tashkandi N, Al-Saleh NS, Manikandan A, Khan FA, Al-Suhaimi EA, Baykal A. Designing of Co 0.5Ni 0. 5Ga xFe 2-xO 4 (0.0 ≤ x ≤ 1.0) Microspheres via Hydrothermal Approach and Their Selective Inhibition on the Growth of Cancerous and Fungal Cells. Pharmaceutics 2021; 13:pharmaceutics13070962. [PMID: 34206751 PMCID: PMC8309058 DOI: 10.3390/pharmaceutics13070962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The current study offers an efficient design of novel nanoparticle microspheres (MCs) using a hydrothermal approach. The Co0.5Ni0.5GaxFe2−xO4 (0.0 ≤ x ≤ 1.0) MCs were prepared by engineering the elements, such as cobalt (Co), nickel (Ni), iron (Fe), and gallium (Ga). There was a significant variation in MCs’ physical structure and surface morphology, which was evaluated using energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscope (SEM). The anti-proliferative activity of MCs was examined by MTT assay and DAPI staining using human colorectal carcinoma cells (HCT-116), human cervical cancer cells (HeLa), and a non-cancerous cell line—human embryonic kidney cells (HEK-293). Post 72 h treatment, MCs caused a dose dependent inhibition of growth and proliferation of HCT-116 and HeLa cells. Conversely, no cytotoxic effect was observed on HEK-293 cells. The anti-fungal action was assessed by the colony forming units (CFU) technique and SEM, resulting in the survival rate of Candida albicans as 20%, with severe morphogenesis, on treatment with MCs x = 1.0. These findings suggest that newly engineered microspheres have the potential for pharmaceutical importance, in terms of infectious diseases and anti-cancer therapy.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: or
| | - Munirah A. Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Uzma Ali
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Nedaa Tashkandi
- Department of Nanomedicine, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (N.T.); (A.B.)
| | - Najat S. Al-Saleh
- Family and Community Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600 073, Tamil Nadu, India;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (N.T.); (A.B.)
| |
Collapse
|
8
|
Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Approaches for enhancing the stability and formation of sulforaphane. Food Chem 2020; 345:128771. [PMID: 33601652 DOI: 10.1016/j.foodchem.2020.128771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
The isothiocyanate sulforaphane (SF) is one of the most potent naturally occurring Phase 2 enzymes inducers derived from brassica vegetables like broccoli, cabbage, brussel sprouts, etc. Ingestion of broccoli releases SF via hydrolysis of glucoraphanin (GRP) by plant myrosinase and/or intestinal microbiota. However, both SF and plant myrosinase are thermal-labile, and the epithiospecifier protein (ESP) directs the hydrolysis of GRP toward formation of sulforaphane nitrile instead of SF. In addition, bacterial myrosinase has low hydrolyzing efficiency. In this review, we discuss strategies that could be employed to improve the stability of SF, increase SF formation during thermal and non-thermal processing of broccoli, and enhance the myrosinase-like activity of the gut microbiota. Furthermore, new cooking methods or blanching technologies should be developed to maintain myrosinase activity, and novel thermostable myrosinase and/or microbes with high SF producing abilities should also be developed.
Collapse
Affiliation(s)
- Wu Yuanfeng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Lv Chengzhi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zou Ligen
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Sun Juan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Song Xinjie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zhang Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Mao Jianwei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China; Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China.
| |
Collapse
|
9
|
Mamdani H, Jalal SI. Histone Deacetylase Inhibition in Non-small Cell Lung Cancer: Hype or Hope? Front Cell Dev Biol 2020; 8:582370. [PMID: 33163495 PMCID: PMC7581936 DOI: 10.3389/fcell.2020.582370] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Epigenetic modulation, including acetylation, methylation, phosphorylation, and ubiquitination, plays a pivotal role in regulation of gene expression. Histone acetylation-a balance between the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs)-is one of the key epigenetic events. Our understanding of the role of HDACs in cancer is evolving. A number of HDAC isoenzymes are overexpressed in a variety of malignancies. Aberrant histone acetylation is associated with dysregulation of tumor suppressor genes leading to development of several solid tumors and hematologic malignancies. Pre-clinical studies have demonstrated that HDAC-1 gene expression is associated with lung cancer progression. Histone hypoacetylation is associated with more aggressive phenotype in adenocarcinoma of the lung. HDAC inhibitors (HDACi) have pleiotropic cellular effects and induce the expression of pro-apoptotic genes/proteins, cause cellular differentiation and/or cell cycle arrest, inhibit angiogenesis, and inhibit transition to a mesenchymal phenotype. Consequently, treatment with HDACi has shown anti-proliferative activity in non-small cell lung cancer (NSCLC) cell lines. Despite promising results in pre-clinical studies, HDACi have shown only modest single agent activity in lung cancer clinical trials. HDAC activation has been implicated as one of the mechanisms causing resistance to chemotherapy, molecularly targeted therapy, and immune checkpoint inhibition. Therefore, there is a growing interest in combining HDACi with these agents to enhance their efficacy or reverse resistance. In this paper, we review the available preclinical and clinical evidence for the use of HDACi in NSCLC. We also review the challenges precluding widespread clinical utility of HDACi as a cancer therapy and future directions.
Collapse
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI, United States
| | - Shadia I. Jalal
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
10
|
In vivo effect of magnetic microspheres loaded with E2-a in the treatment of alveolar echinococcosis. Sci Rep 2020; 10:12589. [PMID: 32724060 PMCID: PMC7387340 DOI: 10.1038/s41598-020-69484-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
The alveolar echinococcosis of human is a severe helminthic disease caused by the larva of Echinococcus multilocularis tapeworms. Novel compounds or therapy strategies for the treatment of alveolar echinococcosis are urgently needed due to the limitation of the widely used albendazole. Magnetic microspheres as drug carriers in magnetically targeted therapy of tumor have gained growing interests advantaged by delivering the drug to the aimed site, achieving localized therapeutic effect effectively under the influence of an external magnetic field. In this study, we formulated magnetic microspheres loaded with E2-a (PLGA-Fe-E2-a) and identified the activity in E. multilocularis-infected mice which infected with 3,000 protoscoleces intraperitoneally. Compared with the untreated control, with the help of a magnet, there was a significant reduction in parasite burden with PLGA-Fe-E2-a treatment and similar reduction observed with albendazole. PLGA-Fe-E2-a treatment group also showed a significant increase in the IFN-γ level and impaired morphological and ultrastructural alterations. Most importantly, one-third concentrations of E2-a from PLGA-Fe-E2 based on the release profile of E2-a was equally effective in inhibiting metacestode growth as E2-a treated group, supporting efficacy and bioavailability of a drug. It will be an alternative treatment for alveolar echinococcosis using magnetic microspheres as drug carriers.
Collapse
|
11
|
Khodaei M, Esmaeili A. Capsulation of methadone in polymeric layers based on magnetic nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2019.1711123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Meisam Khodaei
- Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Esmaeili
- Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020; 43:371-384. [PMID: 32152852 DOI: 10.1007/s12272-020-01225-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.
Collapse
|
13
|
Zheng MH, Bigdeli F, Gao LX, Wu DZ, Yan XW, Hu ML, Morsali A. Synthesis, Characterization and DNA Binding Investigations of a New Binuclear Ag(I) Complex and Evaluation of Its Anticancer Property. Int J Nanomedicine 2020; 15:953-964. [PMID: 32103949 PMCID: PMC7024786 DOI: 10.2147/ijn.s225038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023] Open
Abstract
Aim A new Ag(I) complex (A3) was synthesized and evaluated for its anticancer activity against human cancer cell lines. Materials and Methods The complex A3 was characterized by 1H, 13C, and 31P nuclear magnetic resonance (NMR), infrared (IR) spectra, elemental analysis, and X-ray crystallography. The interaction of the complex with CT-DNA was studied by electronic absorption spectra, fluorescence spectroscopy, and cyclic voltammetry; cell viability (%) was assessed by absorbance measurement of the samples. Results The interaction mode of the complex A3 with DNA is electrostatic, and this complex shows good potential in anticancer properties against HCT 116 (human colorectal cancer cells) and MDA-MB-231 (MD Anderson-metastatic breast) cell lines with 0.5 micromolar concentrations. Conclusion The Ag(I) complex could interact with DNA noncovalently and has anticancer properties.
Collapse
Affiliation(s)
- Mian-Hong Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Lan-Xing Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Deng-Ze Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Xiao-Wei Yan
- College of Materials and Chemical Engineering, and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, Guangxi 542800, People's Republic of China
| | - Mao-Lin Hu
- College of Materials and Chemical Engineering, and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, Guangxi 542800, People's Republic of China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
15
|
Askin S, Zhao M, Gonçalves AD, Gaisford S, Craig DQM. The Development of Quasi-isothermal Calorimetry for the Measurement of Drug–Polymer Miscibility and Crystallization Kinetics: Olanzapine-Loaded PLGA Microparticles. Mol Pharm 2018; 15:3332-3342. [DOI: 10.1021/acs.molpharmaceut.8b00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sean Askin
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Min Zhao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea D. Gonçalves
- DPDD Drug Delivery, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Duncan Q. M. Craig
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
16
|
He Q, Liu J, Liang J, Liu X, Li W, Liu Z, Ding Z, Tuo D. Towards Improvements for Penetrating the Blood-Brain Barrier-Recent Progress from a Material and Pharmaceutical Perspective. Cells 2018; 7:cells7040024. [PMID: 29570659 PMCID: PMC5946101 DOI: 10.3390/cells7040024] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a critical biological structure that prevents damage to the brain and maintains its bathing microenvironment. However, this barrier is also the obstacle to deliver beneficial drugs to treat CNS (central nervous system) diseases. Many efforts have been made for improvement of delivering drugs across the BBB in recent years to treat CNS diseases. In this review, the anatomical and functional structure of the BBB is comprehensively discussed. The mechanisms of BBB penetration are summarized, and the methods and effects on increasing BBB permeability are investigated in detail. It also elaborates on the physical, chemical, biological and nanocarrier aspects to improve drug delivery penetration to the brain and introduces some specific drug delivery effects on BBB permeability.
Collapse
Affiliation(s)
- Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jun Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jing Liang
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Xiaopeng Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Wen Li
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Zhi Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Ziyu Ding
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Du Tuo
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
17
|
Sun R, Lin F, Huang P, Zheng Y. Moderate Genetic Diversity and Genetic Differentiation in the Relict Tree Liquidambar formosana Hance Revealed by Genic Simple Sequence Repeat Markers. FRONTIERS IN PLANT SCIENCE 2016; 7:1411. [PMID: 27708661 PMCID: PMC5030344 DOI: 10.3389/fpls.2016.01411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Chinese sweetgum (Liquidambar formosana) is a relatively fast-growing ecological pioneer species. It is widely used for multiple purposes. To assess the genetic diversity and genetic differentiation of the species, genic SSR markers were mined from transcriptome data for subsequent analysis of the genetic diversity and population structure of natural populations. A total of 10645 potential genic SSR loci were identified in 80482 unigenes. The average frequency was one SSR per 5.12 kb, and the dinucleotide unit was the most abundant motif. A total of 67 alleles were found, with a mean of 6.091 alleles per locus and a mean polymorphism information content of 0.390. Moreover, the species exhibited a relatively moderate level of genetic diversity (He = 0.399), with the highest was found in population XY (He = 0.469). At the regional level, the southwestern region displayed the highest genetic diversity (He = 0.435) and the largest number of private alleles (n = 5), which indicated that the Southwestern region may be the diversity hot spot of L. formosana. The AMOVA results showed that variation within populations (94.02%) was significantly higher than among populations (5.98%), which was in agreement with the coefficient of genetic differentiation (Fst = 0.076). According to the UPGMA analysis and principal coordinate analysis and confirmed by the assignment test, 25 populations could be divided into three groups, and there were different degrees of introgression among populations. No correlation was found between genetic distance and geographic distance (P > 0.05). These results provided further evidence that geographic isolation was not the primary factor leading to the moderate genetic differentiation of L. formosana. As most of the genetic diversity of L. formosana exists among individuals within a population, individual plant selection would be an effective way to use natural variation in genetic improvement programs. This would be helpful to not only protect the genetic resources but also attain effective management and exploit genetic resources.
Collapse
|
18
|
Li W, Jan Zaloga, Ding Y, Liu Y, Janko C, Pischetsrieder M, Alexiou C, Boccaccini AR. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep 2016; 6:23140. [PMID: 27005428 PMCID: PMC4804305 DOI: 10.1038/srep23140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/25/2016] [Indexed: 01/07/2023] Open
Abstract
The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.
Collapse
Affiliation(s)
- Wei Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Jan Zaloga
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Yaping Ding
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Yufang Liu
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Schuhstrasse19, 91052 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Monika Pischetsrieder
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Schuhstrasse19, 91052 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstrasse 10a, 91054 Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany,
| |
Collapse
|
19
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
20
|
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One 2014; 9:e92418. [PMID: 24691273 PMCID: PMC3972196 DOI: 10.1371/journal.pone.0092418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine.
Collapse
Affiliation(s)
- Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Linda Bowman
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Baobo Zou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jin Xu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China; Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Min Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|