1
|
Sun W, Zhong J, Gao B, Feng J, Ye Z, Lin Y, Zhang K, Su W, Zhu S, Li Y, Jia W. In vitro/In vivo Evaluations of Hydroxyapatite Nanoparticles with Different Geometry. Int J Nanomedicine 2024; 19:8661-8679. [PMID: 39193530 PMCID: PMC11348988 DOI: 10.2147/ijn.s469687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Hydroxyapatite-based nanoparticles have found diverse applications in drug delivery, gene carriers, diagnostics, bioimaging and tissue engineering, owing to their ability to easily enter the bloodstream and target specific sites. However, there is limited understanding of the potential adverse effects and molecular mechanisms of these nanoparticles with varying geometries upon their entry into the bloodstream. Here, we used two commercially available hydroxyapatite nanoparticles (HANPs) with different geometries (less than 100 nm in size each) to investigate this issue. Methods First, the particle size, Zeta potential, and surface morphology of nano-hydroxyapatite were characterized. Subsequently, the effects of 2~2000 μM nano-hydroxyapatite on the proliferation, migration, cell cycle distribution, and apoptosis levels of umbilical vein endothelial cells were evaluated. Additionally, the impact of nanoparticles of various shapes on the differential expression of genes was investigated using transcriptome sequencing. Additionally, we investigated the in vivo biocompatibility of HANPs through gavage administration of nanohydroxyapatite in mice. Results Our results demonstrate that while rod-shaped HANPs promote proliferation in Human Umbilical Vein Endothelial Cell (HUVEC) monolayers at 200 μM, sphere-shaped HANPs exhibit significant toxicity to these monolayers at the same concentration, inducing apoptosis/necrosis and S-phase cell cycle arrest through inflammation. Additionally, sphere-shaped HANPs enhance SULT1A3 levels relative to rod-shaped HANPs, facilitating chemical carcinogenesis-DNA adduct signaling pathways in HUVEC monolayers. In vivo experiments have shown that while HANPs can influence the number of blood cells and comprehensive metabolic indicators in blood, they do not exhibit significant toxicity. Conclusion In conclusion, this study has demonstrated that the geometry and surface area of HANPs significantly affect VEC survival status and proliferation. These findings hold significant implications for the optimization of biomaterials in cell engineering applications.
Collapse
Affiliation(s)
- Weitang Sun
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingbin Zhong
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jieling Feng
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zijie Ye
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yueling Lin
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kelan Zhang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenqi Su
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Guo G, Tian A, Lan X, Fu C, Yan Z, Wang C. Nano hydroxyapatite induces glioma cell apoptosis by suppressing NF-κB signaling pathway. Exp Ther Med 2019; 17:4080-4088. [PMID: 30988786 PMCID: PMC6447934 DOI: 10.3892/etm.2019.7418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/15/2019] [Indexed: 01/17/2023] Open
Abstract
Nano-sized hydroxyapatite (nHA) particles have been demonstrated to exert anti-cancer effects on multiple cancer cell lines and animal models of cancer biology. However, the molecular mechanism underlying the effects of nHA particles on glioma cells remains unclear. The present study aimed to examine the effects of nHA on the behavior of glioma cells and investigate its underlying molecular mechanism. Rat glioma C6 cells and human glioma U87MG ATCC cells were exposed to nHA (20–100 µg/ml), and its effects on cell morphology, viability, apoptosis, cell cycle, invasion and nuclear factor (NF)-κB signaling were analyzed. Exposure of C6 and U87MG ATCC cells to 20 µg/ml nHA for 24 h caused cell detachment. Viability of C6 and U87MG ATCC cells were significantly reduced by nHA in a dose-dependent manner (P<0.05). Nuclear staining with Hoechst 33258 exhibited clear chromatin condensation in C6 cells following 24 h exposure to ≥25 µg/ml nHA. Flow cytometry revealed that nHA (20–100 µg/ml) significantly induced apoptosis and cell cycle G2/M arrest in C6 and U87MG ATCC cells (P<0.05). Transwell invasion assay demonstrated that nHA (20–60 µg/ml) significantly inhibited invasion of U87MG ATCC cells (P<0.05). Furthermore, western blotting and confocal immunofluorescence microscopy revealed that nHA (20–100 µg/ml) decreased NF-κB p65 protein expression and blocked NF-κB p65 nuclear translocation in C6 cells. The protein expression of NF-κB target molecules, such as B cell lymphoma 2, cyclooxygenase-2 and survivin, were also significantly reduced by nHA in a dose-dependent manner in both C6 and U87MG ATCC cells (P<0.05). In conclusion, it was demonstrated that the inhibitory effect of nHA on glioma cells is likely associated with the downregulation of NF-κB signaling.
Collapse
Affiliation(s)
- Guocai Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Neurosurgery, Wei Fang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Xiaolei Lan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Changqing Fu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Neurosurgery, The First People's Hospital of Jining City, Jining, Shandong 272011, P.R. China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
5
|
Shi Y, Peng SL, Yang LF, Chen X, Tao YG, Cao Y. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. CHINESE JOURNAL OF CANCER 2016; 35:16. [PMID: 26801987 PMCID: PMC4724123 DOI: 10.1186/s40880-016-0079-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Viral infections contribute to approximately 12% of cancers worldwide, with the vast majority occurring in developing countries and areas. Two DNA viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), are associated with 38% of all virus-associated cancers. The probability of one patient infected with these two distinct types of viruses is increasing. Here, we summarize the co-infection of EBV and HPV in human malignancies and address the possible mechanisms for the co-infection of EBV and HPV during tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Song-Ling Peng
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Li-Fang Yang
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Xue Chen
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Yong-Guang Tao
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078, Hunan, P. R. China.
- Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Changsha, 410078, Hunan, P. R. China.
| |
Collapse
|
6
|
Chen Y, Xu G, Zheng Y, Yan M, Li Z, Zhou Y, Mei L, Li X. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for siRNA targeting HIF-1α for nasopharyngeal carcinoma therapy. Int J Nanomedicine 2015; 10:1375-86. [PMID: 25733830 PMCID: PMC4337506 DOI: 10.2147/ijn.s76092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a crucial transcription factor that plays an important role in the carcinogenesis and development of nasopharyngeal carcinoma. In this research, a novel biodegradable D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA)) nanoparticle (NP) was prepared as a delivery system for small interfering ribonucleic acid (siRNA) molecules targeting HIF-1α in nasopharyngeal carcinoma gene therapy. The results showed that the NPs could efficiently deliver siRNA into CNE-2 cells. CNE-2 cells treated with the HIF-1α siRNA-loaded TPGS-b-(PCL-ran-PGA) NPs showed reduction of HIF-1α expression after 48 hours of incubation via real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. The cytotoxic effect on CNE-2 cells was significantly increased by HIF-1α siRNA-loaded NPs when compared with control groups. In a mouse tumor xenograft model, the HIF-1α siRNA-loaded NPs efficiently suppressed tumor growth, and the levels of HIF-1α mRNA and protein were significantly decreased. These results suggest that TPGS-b-(PCL-ran-PGA) NPs could function as a promising genetic material carrier in antitumor therapy, including therapy for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Gang Xu
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Yi Zheng
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Cente for Biotechnology and BioMedicine, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; Division of Life Sciences and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Maosheng Yan
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Zihuang Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Yayan Zhou
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Lin Mei
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Cente for Biotechnology and BioMedicine, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; Division of Life Sciences and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xianming Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
7
|
|