1
|
Hassanen EI, Abdelrahman RE, Aboul-Ella H, Ibrahim MA, El-Dek S, Shaalan M. Mechanistic Approach on the Pulmonary Oxido-Inflammatory Stress Induced by Cobalt Ferrite Nanoparticles in Rats. Biol Trace Elem Res 2024; 202:765-777. [PMID: 37191761 PMCID: PMC10764397 DOI: 10.1007/s12011-023-03700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Cobalt ferrite nanoparticles (CFN) are employed in data storage, imaging, medication administration, and catalysis due to their superparamagnetic characteristics. The widespread use of CFN led to significantly increased exposure to people and the environment to these nanoparticles. Until now, there is not any published paper describing the adverse effect of repeated oral intake of this nanoformulation on rats' lungs. So, the current research aims to elucidate the pulmonary toxicity prompted by different concentrations of CFN in rats as well as to explore the mechanistic way of such toxicity. We used 28 rats that were divided equally into 4 groups. The control group received normal saline, and the experimental groups received CFN at dosage levels 0.05, 0.5, and 5 mg/kg bwt. Our findings revealed that CFN enhanced dose-dependent oxidative stress manifested by raising in the MDA levels and declining in the GSH content. The histopathological examination revealed interstitial pulmonary inflammation along with bronchial and alveolar damage in both 0.5 and 5 mg CFN given groups. All these lesions were confirmed by the immunohistochemical staining that demonstrated strong iNOS and Cox-2 protein expression. There was also a significant upregulation of TNFα, Cox-2, and IL-1β genes with downregulation of IL-10 and TGF-β genes. Additionally, the group receiving 0.05 mg CFN did not exhibit any considerable toxicity in all measurable parameters. We concluded that the daily oral intake of either 0.5 or 5 mg CFN, but not 0.05 mg, could induce pulmonary toxicity via NPs and/or its leached components (cobalt and iron)-mediated oxido-inflammatory stress. Our findings may help to clarify the mechanisms of pulmonary toxicity generated by these nanoparticles through outlining the standards for risk assessment in rats as a human model.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Samaa El-Dek
- Department of Material Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Polymer Institute, Slovak Academy of Science, Bratislava, Slovakia
| |
Collapse
|
2
|
Malehmir S, Esmaili MA, Khaksary Mahabady M, Sobhani-Nasab A, Atapour A, Ganjali MR, Ghasemi A, Moradi Hasan-Abad A. A review: hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem 2023; 11:1249134. [PMID: 37711315 PMCID: PMC10499493 DOI: 10.3389/fchem.2023.1249134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Nanoparticles have demonstrated noteworthy advancements in the management of various complex medical conditions, particularly cancer. In any case, these particles still harbor the potential to improve medicate conveyance to challenging, hard-to-reach loci. The interactions that occur between nanoparticles and red blood cells during their journey throughout the human body, despite exposure to blood, are still not fully understood. Assessment of the ability of nanoparticles to integrate with blood, characterized as nanoparticle compatibility, has been consistently overlooked and undervalued in its import. This review article investigates the effect of nanoparticles on red blood cells, while examining the compatibility of nanoparticles through the angle of hemolysis. This article discusses the main roles of erythrocytes and also provides an informed interpretation of several mechanisms involved in the interaction of nanoparticles and erythrocytes. Throughout the review, significant emphasis is attributed to the investigation of hemocompatibility studies concerning newly designed nanoparticles to promote their successful translation into clinical application. This review article examines the compatibility of magnetic nanoparticles in various fields, including regenerative medicine, cancer therapy, bioimaging, and drug delivery. Our results show that the chemical composition of the nanoparticle surface is a determining factor in hemocompatibility performance and interaction with blood cells. The surface properties of nanoparticles, namely surface charge, geometry, porosity, and surface functionalities of polymers or specific functional groups, represent key determinants of hemocompatibility.
Collapse
Affiliation(s)
- Shirin Malehmir
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - M. Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Anosov A, Astanina P, Proskuryakov I, Koplak O, Morgunov R. Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe 2O 4 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14517-14526. [PMID: 36383134 DOI: 10.1021/acs.langmuir.2c02659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Structural changes in phosphatidylcholine lipid membranes caused by the introduction of insoluble CoFe2O4 nanoparticles (NPs) are analyzed. Changes in nuclear magnetic resonance spectrum, infrared spectrum, and ionic conductivity of membranes are observed with the addition of NPs. The presence of NPs in membranes is proved by atomic force and magnetic force microscopy. Structural changes in the membranes in the vicinity of the lipid C-O bonds caused by NPs are observed by Scanning near-field optical microscopy. Analysis of nuclear magnetic resonance (NMR) spectra allowed us to identify the affected atomic groups in the membrane surface layers. Conductivity measurements of the bilayer membranes were performed in DC as well as in time-resolved modes. Hydrophobic NPs stimulate surface distortion and creation of pores, which depending on NP concentration leads to an increase in the ionic conductivity of membranes. Concentration dependence demonstrating percolation threshold was analyzed in the frame of the fractal theory approach.
Collapse
Affiliation(s)
- Andrey Anosov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Polina Astanina
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Ivan Proskuryakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Oksana Koplak
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Roman Morgunov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| |
Collapse
|
4
|
Anosov A, Koplak O, Smirnova E, Borisova E, Korepanova E, Derunets A. Effect of Cobalt Ferrite Nanoparticles in a Hydrophilic Shell on the Conductance of Bilayer Lipid Membrane. MEMBRANES 2022; 12:1106. [PMID: 36363661 PMCID: PMC9692745 DOI: 10.3390/membranes12111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
We measured the conductance of bilayer lipid membranes of diphytanoylphosphatidylcholine induced by interaction with cubic magnetic nanoparticles (MNPs) of cobalt ferrite 12 and 27 nm in size and coated with a hydrophilic shell. The MNP coating is human serum albumin (HSA) or polyethylene glycol (PEG). The interaction of nanoparticles added to the bulk solution with the lipid bilayer causes the formation of metastable conductive pores, which, in turn, increases the integral conductance of the membranes. The increase in conductance with increasing MNP concentration was practically independent of the particle size. The dependence of the bilayer conductance on the concentration of PEG-coated MNPs was much weaker than that on the concentration with a shell of HSA. Analyzing the current traces, we believe that the conductive pores formed as a result of the interaction of nanoparticles with the membrane can change their size, remaining metastable. The form of multilevel current traces allows us to assume that there are several metastable pore states close in energy. The average radius of the putative cylindrical pores is in the range of 0.4-1.3 nm.
Collapse
Affiliation(s)
- Andrey Anosov
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | - Oksana Koplak
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Elena Smirnova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Elizaveta Borisova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Eugenia Korepanova
- The Department of General and Medical Biophysics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alice Derunets
- National Research Center Kurchatov Institute, Kurchatov Genomic Center, Academician Kurchatov Square 1, 123098 Moscow, Russia
| |
Collapse
|
5
|
Wu K, Liu J, Chugh VK, Liang S, Saha R, Krishna VD, Cheeran MCJ, Wang JP. Magnetic nanoparticles and magnetic particle spectroscopy-based bioassays: a 15 year recap. NANO FUTURES 2022; 6:022001. [PMID: 36199556 PMCID: PMC9531898 DOI: 10.1088/2399-1984/ac5cd1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
6
|
Garanina AS, Nikitin AA, Abakumova TO, Semkina AS, Prelovskaya AO, Naumenko VA, Erofeev AS, Gorelkin PV, Majouga AG, Abakumov MA, Wiedwald U. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:38. [PMID: 35009988 PMCID: PMC8746458 DOI: 10.3390/nano12010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection. The animals' weight, behavior, and blood cells changes, as well as blood biochemical parameters are correlated to histological examination of organs revealing that cobalt ferrite MNPs do not have toxic effects at concentrations close to those used previously for efficient MHT. Moreover, these MNPs demonstrated high specific loss power (SLP) of about 400 W g-1. Importantly the MNPs retained their magnetic properties inside tumor tissue after intratumoral administration for several MHT cycles within three days. Thus, cobalt ferrite MNPs represent a perspective platform for tumor therapy by MHT due to their ability to provide effective heating without exerting a toxic effect on the organism. This opens up new avenues for smaller MNPs sizes while their heating efficiency is maintained.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Alexey A. Nikitin
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexandra O. Prelovskaya
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexander S. Erofeev
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter V. Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Alexander G. Majouga
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Maxim A. Abakumov
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
| | - Ulf Wiedwald
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Center for Nanointegration Duisburg-Essen, Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Shibaev AV, Smirnova ME, Kessel DE, Bedin SA, Razumovskaya IV, Philippova OE. Remotely Self-Healable, Shapeable and pH-Sensitive Dual Cross-Linked Polysaccharide Hydrogels with Fast Response to Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1271. [PMID: 34066084 PMCID: PMC8151316 DOI: 10.3390/nano11051271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/25/2022]
Abstract
The development of actuators with remote control is important for the construction of devices for soft robotics. The present paper describes a responsive hydrogel of nontoxic, biocompatible, and biodegradable polymer carboxymethyl hydroxypropyl guar with dynamic covalent cross-links and embedded cobalt ferrite nanoparticles. The nanoparticles significantly enhance the mechanical properties of the gel, acting as additional multifunctional non-covalent linkages between the polymer chains. High magnetization of the cobalt ferrite nanoparticles provides to the gel a strong responsiveness to the magnetic field, even at rather small content of nanoparticles. It is demonstrated that labile cross-links in the polymer matrix impart to the hydrogel the ability of self-healing and reshaping as well as a fast response to the magnetic field. In addition, the gel shows pronounced pH sensitivity due to pH-cleavable cross-links. The possibility to use the multiresponsive gel as a magnetic-field-triggered actuator is demonstrated.
Collapse
Affiliation(s)
- Andrey V. Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.S.); (D.E.K.); (O.E.P.)
| | - Maria E. Smirnova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.S.); (D.E.K.); (O.E.P.)
| | - Darya E. Kessel
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.S.); (D.E.K.); (O.E.P.)
| | - Sergey A. Bedin
- Institute of Physics, Technology and Informational Systems, Moscow Pedagogical State University, 119435 Moscow, Russia; (S.A.B.); (I.V.R.)
| | - Irina V. Razumovskaya
- Institute of Physics, Technology and Informational Systems, Moscow Pedagogical State University, 119435 Moscow, Russia; (S.A.B.); (I.V.R.)
| | - Olga E. Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.S.); (D.E.K.); (O.E.P.)
| |
Collapse
|
8
|
Shakil MS, Hasan MA, Uddin MF, Islam A, Nahar A, Das H, Khan MNI, Dey BP, Rokeya B, Hoque SM. In Vivo Toxicity Studies of Chitosan-Coated Cobalt Ferrite Nanocomplex for Its Application as MRI Contrast Dye. ACS APPLIED BIO MATERIALS 2020; 3:7952-7964. [DOI: 10.1021/acsabm.0c01069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Md. Salman Shakil
- Material Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar Union 1342, Bangladesh
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Md. Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar Union 1342, Bangladesh
| | - Md. Forhad Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar Union 1342, Bangladesh
| | - Aminul Islam
- Material Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
- Department of Physics, Dhaka University, Dhaka 1000, Bangladesh
| | - Arijun Nahar
- Material Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Harinarayan Das
- Material Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | | | - Bishnu Pada Dey
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Begum Rokeya
- Department of Pharmacology, Bangladesh Institute of Health Sciences, Dhaka 1216, Bangladesh
| | - S. Manjura Hoque
- Material Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| |
Collapse
|
9
|
Gökçe D, Köytepe S, Özcan İ. Assessing short-term effects of magnetite ferrite nanoparticles on Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31489-31504. [PMID: 32488719 DOI: 10.1007/s11356-020-09406-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles (MNPs) are used in a wide range of sectors ranging from electronics to biomedicine, as well as in eutrophicated lake restoration due to their high P, N, and heavy metal adsorption capacity. This study assessed the effects of MNPs on mortality and morphometric changes of D. magna. According to the SEM, the synthesised MNPs were found to have spherical nanoparticles, be uniformly distributed, and have a homolithic size distribution of 50-110 nm. The EDX spectra confirmed the elemental structure and purities of these MNPs. A total of 396 neonates were used for short-term bioassays (96 h) through the MNPs in the laboratory (16:8 photoperiod). Experiments were applied in triplicate for each concentration of CuFe2O4, CoFe2O4, and NiFe2O4 MNPs and their respective control groups. Mortality and morphological measurements of each individual were recorded every 24 h. In the probit analysis, the 96-h LC50 (p < 0.05) for CuFe2O4, CoFe2O4, and NiFe2O4 MNPs was calculated to be 1.455 mg L-1, 39.834 mg L-1, and 21.730 mg L-1, respectively. CuFe2O4 MNPs were found to be more toxic than the other two MNPs. The concentrations of CuFe2O4, CoFe2O4, and NiFe2O4 MNPs drastically affected life span and morphologic growth of D. magna as a result of a short time exposure. The results of this study are useful for assessing what risks they pose to freshwater ecosystems.
Collapse
Affiliation(s)
- Didem Gökçe
- Department of Biology, Faculty of Arts and Science, İnönü University, Malatya, Turkey.
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
10
|
Sousa-Junior AA, Mendanha SA, Carrião MS, Capistrano G, Próspero AG, Soares GA, Cintra ER, Santos SFO, Zufelato N, Alonso A, Lima EM, Miranda JRA, Silveira-Lacerda EDP, Cardoso CG, Bakuzis AF. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study. Mol Pharm 2020; 17:837-851. [PMID: 31977228 DOI: 10.1021/acs.molpharmaceut.9b01094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.
Collapse
Affiliation(s)
| | - Sebastião A Mendanha
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Marcus S Carrião
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Gustavo Capistrano
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - André G Próspero
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | - Guilherme A Soares
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | - Emílio R Cintra
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás 74605-220, Brazil
| | - Sônia F O Santos
- Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás 74045-155, Brazil
| | - Nicholas Zufelato
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Antônio Alonso
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Eliana M Lima
- Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Goiás 74605-220, Brazil
| | - José Ricardo A Miranda
- Biomagnetism Lab, Physics and Biophysics Department, São Paulo State University, Unesp, Botucatu, São Paulo 18618-000, Brazil
| | | | - Cléver G Cardoso
- Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás 74045-155, Brazil
| | - Andris F Bakuzis
- Physics Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
11
|
Abstract
The field of nanomedicine has recently emerged as a product of the expansion of a range of nanotechnologies into biomedical science, pharmacology and clinical practice. Due to the unique properties of nanoparticles and the related nanostructures, their applications to medical diagnostics, imaging, controlled drug and gene delivery, monitoring of therapeutic outcomes, and aiding in medical interventions, provide a new perspective for challenging problems in such demanding issues as those involved in the treatment of cancer or debilitating neurological diseases. In this review, we evaluate the role and contributions that the applications of magnetic nanoparticles (MNPs) have made to various aspects of nanomedicine, including the newest magnetic particle imaging (MPI) technology allowing for outstanding spatial and temporal resolution that enables targeted contrast enhancement and real-time assistance during medical interventions. We also evaluate the applications of MNPs to the development of targeted drug delivery systems with magnetic field guidance/focusing and controlled drug release that mitigate chemotherapeutic drugs’ side effects and damage to healthy cells. These systems enable tackling of multiple drug resistance which develops in cancer cells during chemotherapeutic treatment. Furthermore, the progress in development of ROS- and heat-generating magnetic nanocarriers and magneto-mechanical cancer cell destruction, induced by an external magnetic field, is also discussed. The crucial roles of MNPs in the development of biosensors and microfluidic paper array devices (µPADs) for the detection of cancer biomarkers and circulating tumor cells (CTCs) are also assessed. Future challenges concerning the role and contributions of MNPs to the progress in nanomedicine have been outlined.
Collapse
|
12
|
Agotegaray MA, Campelo AE, Zysler RD, Gumilar F, Bras C, Gandini A, Minetti A, Massheimer VL, Lassalle VL. Magnetic nanoparticles for drug targeting: from design to insights into systemic toxicity. Preclinical evaluation of hematological, vascular and neurobehavioral toxicology. Biomater Sci 2018; 5:772-783. [PMID: 28256646 DOI: 10.1039/c6bm00954a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple two-step drug encapsulation method was developed to obtain biocompatible magnetic nanocarriers for the potential targeted treatment of diverse diseases. The nanodevice consists of a magnetite core coated with chitosan (Chit@MNPs) as a platform for diclofenac (Dic) loading as a model drug (Dic-Chit@MNPs). Mechanistic and experimental conditions related to drug incorporation and quantification are further addressed. This multi-disciplinary study aims to elucidate the toxicological impact of the MNPs at hematological, vascular, neurological and behavioral levels. Blood compatibility assays revealed that MNPs did not affect either erythrosedimentation rates or erythrocyte integrity at the evaluated doses (1, 10 and 100 μg mL-1). A microscopic evaluation of blood smears indicated that MNPs did not induce morphological changes in blood cells. Platelet aggregation was not affected by MNPs either and just a slight diminution was observed with Dic-Chit@MNPs, an effect possibly due to diclofenac. The examined formulations did not exert cytotoxicity on rat aortic endothelial cells and no changes in cell viability or their capacity to synthesize NO were observed. Behavioral and functional nervous system parameters in a functional observational battery were assessed after a subacute treatment of mice with Chit@MNPs. The urine pools of the exposed group were decreased. Nephritis and an increased number of megakaryocytes in the spleen were observed in the histopathological studies. Sub-acute exposure to Chit@MNPs did not produce significant changes in the parameters used to evaluate neurobehavioral toxicity. The aspects focused on within this manuscript are relevant at the pre-clinical level providing new and novel knowledge concerning the biocompatibility of magnetic nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Mariela A Agotegaray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| | - Adrián E Campelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Roberto D Zysler
- CONICET - Centro Atómico Bariloche, Instituto Balseiro, S.C. de Bariloche, Argentina
| | - Fernanda Gumilar
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristina Bras
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Gandini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandra Minetti
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Virginia L Massheimer
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Verónica L Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
13
|
Ahmad F, Liu X, Zhou Y, Yao H, Zhao F, Ling Z, Xu C. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe 2 O 4 ) nanoparticles in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY 2016; 31:2068-2080. [PMID: 26462460 DOI: 10.1002/tox.22206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe2 O4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe2 O4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe2 O4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068-2080, 2016.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoyi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fangfang Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhaoxing Ling
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chao Xu
- Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
14
|
Oliveira ABB, de Moraes FR, Candido NM, Sampaio I, Paula AS, de Vasconcellos A, Silva TC, Miller AH, Rahal P, Nery JG, Calmon MF. Metabolic Effects of Cobalt Ferrite Nanoparticles on Cervical Carcinoma Cells and Nontumorigenic Keratinocytes. J Proteome Res 2016; 15:4337-4348. [DOI: 10.1021/acs.jproteome.6b00411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Fabio Rogério de Moraes
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
- Multiuser
Center for Biomolecular Innovation, São Paulo State University, São
José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Natalia Maria Candido
- Biology
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Isabella Sampaio
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Alex Silva Paula
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Adriano de Vasconcellos
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Thais Cerqueira Silva
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Alex Henrique Miller
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Paula Rahal
- Biology
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Jose Geraldo Nery
- Physics
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| | - Marilia Freitas Calmon
- Biology
Department, São Paulo State University, São José do Rio Preto, 15054-000 São Paulo, Brazil
| |
Collapse
|
15
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alshamsan A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf B Biointerfaces 2016; 148:665-673. [PMID: 27701048 DOI: 10.1016/j.colsurfb.2016.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Cobalt iron oxide (CoFe2O4) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa JA, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL, Dias SC, Otero-Gonzalez AJ. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5. Int J Nanomedicine 2016; 11:3849-57. [PMID: 27563243 PMCID: PMC4984987 DOI: 10.2147/ijn.s107561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.
Collapse
Affiliation(s)
| | - Viviana Figueroa-Espi
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba
| | | | - Caroline D Pereira
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | - Hilda Garay
- Laboratory of Peptide Analysis and Synthesis, Center of Genetic Engineering and Biotechnology, La Habana, Havana, Cuba
| | - João Arg Barbosa
- Department of Cellular Biology, Laboratory of Biophysics, Institute of Biological Science, University of Brasilia
| | - Rosana Falcão
- Brazilian Agricultural Research Corporation (EMBRAPA), Center of Genetic Resources and Biotechnology (CENARGEN), Brasilia DF, Brazil
| | - Linnavel Jiménez-Hernández
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba
| | - Osvaldo Estévez-Hernández
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba; Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Cuba
| | - Edilso Reguera
- Research Center for Applied Science and Advanced Technology (CICATA), National Polytechnic Institute (IPN), Lagaria Unit, Mexico DF, Mexico
| | - Octavio L Franco
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Post-Graduate in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Simoni C Dias
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
17
|
|
18
|
Drašler B, Drobne D, Poklar Ulrih N, Ota A. Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C₆₀ on membranes. PROTOPLASMA 2016; 253:175-184. [PMID: 25833389 DOI: 10.1007/s00709-015-0803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Fullerenes (C60) are some of the most promising carbon nanomaterials to be used for medical applications as drug delivery agents. Computational and experimental studies have proposed their ability to enter cells by penetrating lipid bilayers. The aim of our study was to provide experimental evidence on whether pristine C60 in physiological media could penetrate cell membranes. The effect was tested on phospholipid vesicles (liposomes) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and validated on isolated human red blood cells (RBCs). We incubated the liposomes in an aqueous suspension of C60 and dissolved the lipids and C60 together in chloroform and subsequently formatted the liposomes. By differential scanning calorimetry measurements, we assessed the effect of C60 on the phospholipid thermal profile. The latter was not affected after the incubation of liposomes in the C60 suspension; also, a shape transformation of RBCs did not occur. Differently, by dispersing both C60 and the phospholipids in chloroform, we confirmed the possible interaction of C60 with the bilayer. We provide experimental data suggesting that the suspension medium is an important factor in determining the C60-membrane interaction, which is not always included in computational studies. Since the primary particle size is not the only crucial parameter in C60-membrane interactions, it is important to determine the most relevant characteristics of their effects on membranes.
Collapse
Affiliation(s)
- Barbara Drašler
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ajda Ota
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
19
|
Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, Xiao Y, Chen L, Chen L, Li Z. Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes. Sci Rep 2015; 5:16209. [PMID: 26537855 PMCID: PMC4633654 DOI: 10.1038/srep16209] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Fe3O4 magnetic nanoparticles (Fe3O4-MNPs) have been widely used in clinical diagnosis. Hemocompatibility of the nanoparticles is usually evaluated by hemolysis. However, hemolysis assessment does not measure the dysfunctional erythrocytes with pathological changes on the unbroken cellular membrane. The aim of this study is to evaluate the use of suicidal death of erythrocytes (i.e. eryptosis indices) as a novel predictive and prognostic parameter, and to determine the impact of Fe3O4-MNPs on cellular membrane structure and the rheology properties of blood in circulation. Our results showed that phosphatidylserine externalization assessment was significantly more sensitive than classical hemolysis testing in evaluating hemocompatibility. Although no remarkable changes of histopathology, hematology and serum biochemistry indices were observed in vivo, Fe3O4-MNPs significantly affected hemorheology indices including erythrocyte deformation index, erythrocyte rigidity index, red blood cell aggregation index, and erythrocyte electrophoresis time, which are related to the mechanical properties of the erythrocytes. Oxidative stress induced calcium influx played a critical role in the eryptotic activity of Fe3O4-MNPs. This study demonstrated that Fe3O4-MNPs cause eryptosis and changes in flow properties of blood, suggesting that phosphatidylserine externalization can serve as a predictive parameter for hemocompatibility assay.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Fengjie Li
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaojun Deng
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Lili Chen
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Ahmad F, Yao H, Zhou Y, Liu X. Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: interaction, adaptation and oxidative stress. CHEMOSPHERE 2015; 139:479-485. [PMID: 26291677 DOI: 10.1016/j.chemosphere.2015.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
The potential toxicity of CoFe2O4 nanobeads (NBs) in Chlorella vulgaris was observed up to 72h. Algal cell morphology, membrane integrity and viability were severely compromised due to adsorption and aggregation of NBs on algal surfaces, release of Fe(3+) and Co(2+) ions and possible mechanical damage by NBs. Interactions with NBs and effective decrease in ions released by aggregation and exudation of algal cells as a self defense mechanism were observed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and inductively coupled plasma mass spectrometry (ICP-MS). The results corroborated CoFe2O4 NBs induced ROS triggered oxidative stress, leading to a reduction in catalase activity, activation of the mutagenic glutathione s-transferase (mu-GST) and acid phosphatase (AP) antioxidant enzymes, and an increase in genetic aberrations, metabolic and cellular signal transduction dysfunction. Circular dichroism (CD) spectra indicated the weak interactions of NBs with BSA, with slight changes in the α-helix structure of BSA confirming conformational changes in structure, hence the potential for functional interactions with biomolecules. Possible interferences of CoFe2O4 NBs with assay techniques and components indicated CoFe2O4 NBs at lower concentration do not show any significant interference with ROS, catalase, mu-GST and no interference with CD measurements. This study showed ROS production is one of the pathways of toxicity initiated by CoFe2O4 NBs and illustrates the complex processes that may occur between organisms and NBs in natural complex ecosystem.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, China.
| | - Xiaoyi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Ahmad F, Liu X, Zhou Y, Yao H. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:21-28. [PMID: 26197244 DOI: 10.1016/j.aquatox.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 05/28/2023]
Abstract
The broad spectrum applications of CoFe2O4 NPs have attracted much interest in medicine, environment and industry, resulting in exceedingly higher exposures to humans and environmental systems in succeeding days. Their health effects and potential biological impacts need to be determined for risk assessment. Zebrafish (Danio rerio) embryos were exposed to environmentally relevant doses of nano-CoFe2O4 (mean diameter of 40nm) with a concentration range of 10-500μM for 96h. Acute toxic end points were evaluated by survival rate, malformation, hatching delay, heart dysfunction and tail flexure of larvae. Dose and time dependent developmental toxicity with severe cardiac edema, down regulation of metabolism, hatching delay and tail/spinal cord flexure and apoptosis was observed. The biochemical changes were evaluated by ROS, Catalase (CAT), Lipid peroxidation (LPO), Acid phophatase (AP) and Glutatione s- transferase (GST). An Agglomeration of NPs and dissolution of ions induces severe mechanical damage to membranes and oxidative stress. Severe apoptosis of cells in the head, heart and tail region with inhibition of catalase confirms ROS induced acute toxicity with increasing concentration. Increased activity of GST and AP at lower concentrations of CoFe2O4 NPs demonstrates the severe oxidative stress. Circular dichroism (CD) spectra indicated the weak interactions of NPs with BSA and slight changes in α-helix structure. In addition, CoFe2O4 NPs at lower concentrations do not show any considerable interference with assay components and analytical instruments. The results are possible elucidation of pathways of toxicity induced by these particles, as well as contributing in defining the protocols for risk assessment of these nanoparticles.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyi Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, China.
| | - Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
22
|
Niemirowicz K, Surel U, Wilczewska AZ, Mystkowska J, Piktel E, Gu X, Namiot Z, Kułakowska A, Savage PB, Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology 2015; 13:32. [PMID: 25929281 PMCID: PMC4458011 DOI: 10.1186/s12951-015-0093-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023] Open
Abstract
Background Ceragenins, synthetic mimics of endogenous antibacterial peptides, are promising candidate antimicrobial agents. However, in some settings their strong bactericidal activity is associated with toxicity towards host cells. To modulate ceragenin CSA-13 antibacterial activity and biocompatibility, CSA-13-coated magnetic nanoparticles (MNP-CSA-13) were synthesized. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize MNP-CSA-13 physicochemical properties. Bactericidal action and ability of these new compounds to prevent Pseudomonas. aeruginosa biofilm formation were assessed using a bacteria killing assay and crystal violet staining, respectively. Release of hemoglobin from human red blood cells was measured to evaluate MNP-CSA-13 hemolytic activity. In addition, we used surface activity measurements to monitor CSA-13 release from the MNP shell. Zeta potentials of P. aeruginosa cells and MNP-CSA-13 were determined to assess the interactions between the bacteria and nanoparticles. Morphology of P. aeruginosa subjected to MNP-CSA-13 treatment was evaluated using atomic force microscopy (AFM) to determine structural changes indicative of bactericidal activity. Results Our studies revealed that the MNP-CSA-13 nanosystem is stable and may be used as a pH control system to release CSA-13. MNP-CSA-13 exhibits strong antibacterial activity, and the ability to prevent bacteria biofilm formation in different body fluids. Additionally, a significant decrease in CSA-13 hemolytic activity was observed when the molecule was immobilized on the nanoparticle surface. Conclusion Our results demonstrate that CSA-13 retains bactericidal activity when immobilized on a MNP while biocompatibility increases when CSA-13 is covalently attached to the nanoparticle.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Urszula Surel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | | | - Joanna Mystkowska
- Department of Materials and Biomedical Engineering, Białystok University of Technology, 15-351, Białystok, Poland.
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Xiaobo Gu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Zbigniew Namiot
- Department of Physiology, Medical University of Białystok, 15-230, Białystok, Poland.
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-230, Bialystok, Poland.
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland. .,Department of Physiology, Pathophysiology and Microbiology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-317, Kielce, Poland.
| |
Collapse
|
23
|
Pajnič M, Drašler B, Šuštar V, Krek JL, Štukelj R, Šimundić M, Kononenko V, Makovec D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. J Nanobiotechnology 2015; 13:28. [PMID: 25886274 PMCID: PMC4391140 DOI: 10.1186/s12951-015-0087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. RESULTS We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CONCLUSIONS CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable methods for the study of effects of various substances on biological membranes and therefrom derived effects on organisms.
Collapse
Affiliation(s)
- Manca Pajnič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Barbara Drašler
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Vid Šuštar
- Lymphocyte Cytoskeleton Group, Institute of Biomedicine/Pathology, BioCity, University of Turku, Tykistökatu 6B, Turku, SF-20520, Finland.
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Metka Šimundić
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| | - Veno Kononenko
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Darko Makovec
- J. Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Henry Hägerstrand
- Department of Biosciences, BioCity, Åbo Akademi University, BioCity, Artillerigatan 6, Åbo/Turku, SF-20520, Finland.
| | - Damjana Drobne
- Group of Nanobiology and Nanotoxicology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, Ljubljana, SI-1000, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
24
|
Kralj-Iglič V. Membrane Microvesiculation and its Suppression. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Cámara CI, Monzón LMA, Coey JMD, Yudi LM. Interaction of magnetic nanoparticles with phospholipid films adsorbed at a liquid/liquid interface. Phys Chem Chem Phys 2015; 17:414-21. [DOI: 10.1039/c4cp04464a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of Co magnetic nanoparticles in phospholipid films decreases their structuration and increases their permeability to ion transfer.
Collapse
Affiliation(s)
- C. I. Cámara
- INFIQC (CONICET-Universidad Nacional de Córdoba)
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
- 5000 Córdoba
- Argentina
| | | | | | - L. M. Yudi
- INFIQC (CONICET-Universidad Nacional de Córdoba)
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
- 5000 Córdoba
- Argentina
| |
Collapse
|