1
|
Liang L, Ren J, Dai J, Liu J, Zhang L, Li D, Yang C, Yu J. Layered double hydroxides - poloxamer 188 nanocomposites based on exfoliation reassembling for improved cellular uptake and controlled delivery of methotrexate. Pharm Dev Technol 2023; 28:743-754. [PMID: 37577952 DOI: 10.1080/10837450.2023.2246555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Exploitation of advanced methotrexate (MTX) delivery with nanocomposites has important clinical application value. Poloxamer 188 micelle and layered double hydroxide loaded with MTX (LDH-MTX) by exfoliation reassembling were used to prepare LDH-MTX-poloxamer 188 nanocomposites with good dispersibility and efficient cellular uptake for controlled drug delivery. The LDH-MTX-poloxamer 188 nanocomposites with sphere-like morphology, of which the average hydrodynamic diameter was <100 nm, were shown to have better dispersion state than naked LDH-MTX. Importantly, the LDH-MTX-poloxamer 188 nanocomposites could achieve significant sustained drug release and have obvious pH dependent responsive release ability. In addition, these nanocomposites also exhibited long-term and excellent in vitro antitumor efficacy as opposed to pure MTX or LDH-MTX as evident from cell viability. More interestingly, compared to pure FITC used to simulate MTX, LDH nanocomposites labeled with FITC were considered to have better cell adhesion through cell uptake. Therefore, the studied nanocomposites of LDH-MTX-poloxamer 188 can be further used as a new advanced MTX delivery nanovehicles with desired properties in future therapeutic aspects.
Collapse
Affiliation(s)
- Liang Liang
- Analytical and Testing Center, Jiujiang University, Jiujiang, China
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China
| | - Jun Dai
- Analytical and Testing Center, Jiujiang University, Jiujiang, China
| | - Jianyun Liu
- Key Laboratory of Jiangxi Province for the Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Lifang Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, China
| | - Donglin Li
- Analytical and Testing Center, Jiujiang University, Jiujiang, China
| | - Chao Yang
- Analytical and Testing Center, Jiujiang University, Jiujiang, China
| | - Jingmou Yu
- Key Laboratory of Jiangxi Province for the Systems Biomedicine, Jiujiang University, Jiujiang, China
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu R, Li Q, Qin S, Qiao L, Yang M, Liu S, Nice EC, Zhang W, Huang C, Zheng S, Gao W. Sertaconazole-repurposed nanoplatform enhances lung cancer therapy via CD44-targeted drug delivery. J Exp Clin Cancer Res 2023; 42:188. [PMID: 37507782 PMCID: PMC10385912 DOI: 10.1186/s13046-023-02766-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent causes of cancer-related deaths worldwide. Drug repurposing and nano-drug delivery systems are attracting considerable attention for improving anti-cancer therapy. Sertaconazole (STZ), an antifungal agent, has been reported to exhibit cytotoxicity against both normal and tumor cells, and its medical use is limited by its poor solubility. In order to overcome such shortcomings, we prepared a drug-repurposed nanoplatform to enhance the anti-tumor efficiency. METHODS Nanoplatform was prepared by thin film dispersion. Drug release studies and uptake studies were measured in vitro. Subsequently, we verified the tumor inhibition mechanisms of HTS NPs through apoptosis assay, immunoblotting and reactive oxygen species (ROS) detection analyses. Antitumor activity was evaluated on an established xenograft lung cancer model in vivo. RESULTS Our nanoplatform improved the solubility of sertaconazole and increased its accumulation in tumor cells. Mechanistically, HTS NPs was dependent on ROS-mediated apoptosis and pro-apoptotic autophagy to achieve their excellent anti-tumor effects. Furthermore, HTS NPs also showed strong inhibitory ability in nude mouse xenograft models without significant side effects. CONCLUSIONS Our results suggest that sertaconazole-repurposed nanoplatform provides an effective strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shanshan Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shaojiang Zheng
- Hainan Cancer Center of The First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China.
| |
Collapse
|
3
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:E5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
4
|
Yan M, Yang C, Huang B, Huang Z, Huang L, Zhang X, Zhao C. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles. Int J Nanomedicine 2017; 12:7183-7195. [PMID: 29042768 PMCID: PMC5633269 DOI: 10.2147/ijn.s146414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study, the effects of inorganic nanoparticle aggregation on their systemic toxicity were examined. Remarkably, aggregation was observed after the mixing of naked LDH nanoparticles with saline or erythrocytes. Significant accumulation of the naked LDH nanoparticles in the lungs of mice was detected 1 h after intravenous administration, and the survival rate of mice was 0% after 6 repeated injections. Furthermore, flocculent precipitates in the alveoli and congestion in the lung interstitium were observed in the dead mice. However, lipid membrane-coated LDH nanoparticles would not form aggregates and could be injected intravenously >6 times without causing death. These findings suggested that repeated injections of LDH were lethal even at low dose (30 mg/kg), and lipid membrane coating can be considered as an approach for reducing this risk.
Collapse
Affiliation(s)
- Mina Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Chanzhen Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Binyao Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Liangfeng Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xuefei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
5
|
Shi S, Fliss BC, Gu Z, Zhu Y, Hong H, Valdovinos HF, Hernandez R, Goel S, Luo H, Chen F, Barnhart TE, Nickles RJ, Xu ZP, Cai W. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging. Sci Rep 2015; 5:16930. [PMID: 26585551 PMCID: PMC4653656 DOI: 10.1038/srep16930] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/21/2015] [Indexed: 11/25/2022] Open
Abstract
Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation (64)Cu(2+) and trivalent cation (44)Sc(3+) were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation (89)Zr(4+) could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with (64)Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.
Collapse
Affiliation(s)
- Sixiang Shi
- Materials Science Program, University of Wisconsin–Madison, WI, USA
| | - Brianne C. Fliss
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Zi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Yian Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Hong
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | | | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin–Madison, WI, USA
| | - Shreya Goel
- Materials Science Program, University of Wisconsin–Madison, WI, USA
| | - Haiming Luo
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin–Madison, WI, USA
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin–Madison, WI, USA
| | - Robert J. Nickles
- Department of Medical Physics, University of Wisconsin–Madison, WI, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Weibo Cai
- Materials Science Program, University of Wisconsin–Madison, WI, USA
- Department of Radiology, University of Wisconsin–Madison, WI, USA
- Department of Medical Physics, University of Wisconsin–Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
6
|
Dong H, Parekh HS, Xu ZP. Enhanced cellular delivery and biocompatibility of a small layered double hydroxide-liposome composite system. Pharmaceutics 2014; 6:584-98. [PMID: 25431895 PMCID: PMC4279134 DOI: 10.3390/pharmaceutics6040584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/13/2023] Open
Abstract
The various classes of gene delivery vectors possess distinct advantages and disadvantages, each of which impacts on cargo loading, delivery and, ultimately, its function. With this in mind, herein we report on a small layered double hydroxide (sLDH)–liposome composite system, drawing upon the salient features of LDH and liposome classes of vectors, while avoiding their inherent shortfalls when used independently. sLDH–liposome composites were prepared by the hydration of freeze-dried matrix method. These composite systems, with a Z-average size of ≈200 nm, exhibited low cytotoxicity and demonstrated good suspension stability, both in water and cell culture medium after rehydration. Our studies demonstrate that short dsDNAs/ssDNAs were completely bound and protected in the composite system at an sLDH:DNA mass ratio of 20:1, regardless of the approach to DNA loading. This composite system delivered DNA to HCT-116 cells with ≈3-fold greater efficiency, when compared to sLDH alone. Our findings point towards the sLDH-liposome composite system being an effective and biocompatible gene delivery system.
Collapse
Affiliation(s)
- Haiyan Dong
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Harendra S Parekh
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|