1
|
Daniel M, Eleršič Filipič K, Filová E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin 2023; 26:281-290. [PMID: 35380071 DOI: 10.1080/10255842.2022.2058875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.
Collapse
Affiliation(s)
- Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Fojt
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
2
|
Frenzel J, Kupferer A, Zink M, Mayr SG. Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3858. [PMID: 36364633 PMCID: PMC9656521 DOI: 10.3390/nano12213858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron-material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, ζ-potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material's cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring.
Collapse
Affiliation(s)
- Jan Frenzel
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Astrid Kupferer
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Stefan G. Mayr
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
dos Anjos KFL, da Silva CDC, de Souza MAA, de Mattos AB, Coelho LCBB, Machado G, de Melo JV, de Figueiredo RCBQ. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells. Biomolecules 2021; 11:1748. [PMID: 34944393 PMCID: PMC8698878 DOI: 10.3390/biom11121748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.
Collapse
Affiliation(s)
- Keicyanne Fernanda Lessa dos Anjos
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Cynarha Daysy Cardoso da Silva
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| | - Alessandra Batista de Mattos
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Ciências Biológicas, Departamento de Bioquímica, Campus da UFPE, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil;
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Janaina Viana de Melo
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luiz Freire, 01. Cidade Universitária, Recife 50740-540, PE, Brazil; (A.B.d.M.); (G.M.); (J.V.d.M.)
| | - Regina Celia Bressan Queiroz de Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães (FIOCRUZ-PE), Campus da UFPE, Av. Prof. Moraes Rego s/n Cidade Universitária, Recife 50670-420, PE, Brazil; (K.F.L.d.A.); (C.D.C.d.S.); (M.A.A.d.S.)
| |
Collapse
|
4
|
Hosseinpour S, Nanda A, Walsh LJ, Xu C. Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2336. [PMID: 34578650 PMCID: PMC8471155 DOI: 10.3390/nano11092336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Peri-implantitis is the major cause of the failure of dental implants. Since dental implants have become one of the main therapies for teeth loss, the number of patients with peri-implant diseases has been rising. Like the periodontal diseases that affect the supporting tissues of the teeth, peri-implant diseases are also associated with the formation of dental plaque biofilm, and resulting inflammation and destruction of the gingival tissues and bone. Treatments for peri-implantitis are focused on reducing the bacterial load in the pocket around the implant, and in decontaminating surfaces once bacteria have been detached. Recently, nanoengineered titanium dental implants have been introduced to improve osteointegration and provide an osteoconductive surface; however, the increased surface roughness raises issues of biofilm formation and more challenging decontamination of the implant surface. This paper reviews treatment modalities that are carried out to eliminate bacterial biofilms and slow their regrowth in terms of their advantages and disadvantages when used on titanium dental implant surfaces with nanoscale features. Such decontamination methods include physical debridement, chemo-mechanical treatments, laser ablation and photodynamic therapy, and electrochemical processes. There is a consensus that the efficient removal of the biofilm supplemented by chemical debridement and full access to the pocket is essential for treating peri-implantitis in clinical settings. Moreover, there is the potential to create ideal nano-modified titanium implants which exert antimicrobial actions and inhibit biofilm formation. Methods to achieve this include structural and surface changes via chemical and physical processes that alter the surface morphology and confer antibacterial properties. These have shown promise in preclinical investigations.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| |
Collapse
|
5
|
Zhao Q, Zhang Y, Xiao L, Lu H, Ma Y, Liu Q, Wang X. Surface engineering of titania nanotubes incorporated with double-layered extracellular vesicles to modulate inflammation and osteogenesis. Regen Biomater 2021; 8:rbab010. [PMID: 34211726 PMCID: PMC8240597 DOI: 10.1093/rb/rbab010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Titania nanotubes (TNT) generated on titanium implant are emerged as important modification technique to facilitate bone regeneration. Mesenchymal stem cells (MSCs)-derived exosomes are membrane bound extracellular vesicles (EVs), which play an important role in tissue regeneration. The objective of this study was to generate an EVs hybrid TNT aiming at regulating inflammation, MSCs recruitment and osteogenesis. We isolated EVs from MSCs (MSCs EVs) and 3-day osteogenically differentiated MSCs (3d EVs). MSC EVs and 3d EVs exhibited round morphology under TEM, which also showed robust internalization by human bone marrow derived MSCs (hBMSCs). Next, we fabricated 3d EVs/MSC EVs hybrid TNT. When inflammatory macrophages were co-cultured with EVs hybrid TNT, the gene and protein expression of inflammatory cytokine were significantly reduced. Macrophage morphology was also examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Further migratory ability study using hBMSCs indicated significant enhancement of MSCs migration in EVs hybrid TNT. In addition, we further demonstrated significant increase of osteogenic differentiation of hBMSCs in EVs hybrid TNT. This study suggests that EVs hybrid TNT may serve as a viable therapeutic approach to enhance osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Qi Liu
- Department of Periodontology, Stomatological Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
6
|
Li Z, He J, Li B, Zhang J, He K, Duan X, Huang R, Wu Z, Xiang G. Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated apoptotic cell death in liver cancer cells. J Int Med Res 2020; 48:300060520903652. [PMID: 32281441 PMCID: PMC7155242 DOI: 10.1177/0300060520903652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective Titanium oxide (TiO2) acts as a photosensitizer in photodynamic therapy by mediating reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress. This study aimed to investigate the effect of TiO2 on ER stress in liver cancer cells. Methods Normal human liver and human hepatocarcinoma cell lines were incubated with various concentrations of TiO2 nanotubes for 48 hours. Cell growth, apoptosis, cell cycle, and cellular ROS were detected. Expression levels of ER stress sensors (PERK and ATF6) and Bax were evaluated by western blot. The effect of TiO2 on liver cancer growth was also investigated in mice in vivo. Results TiO2 inhibited cell growth, increased apoptosis and cellular ROS levels, and arrested the cell cycle in G1 stage in liver cancer cells. TiO2 also increased PERK, ATF6, and Bax expression levels in liver cancer cells in dose-dependent manners. TiO2 had no significant effect on cell growth, apoptosis, ROS level, cell cycle distribution, or PERK, ATF6, or Bax expression in normal liver cells. TiO2 administration reduced tumor volume and increased PERK, Bax, and ATF6 expression levels in tumor tissues in vivo. Conclusions TiO2 nanoparticles increased ROS-induced ER stress and activated the PERK/ATF6/Bax axis in liver cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Zhiwang Li
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, China
| | - Jingliang He
- Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Bowei Li
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jinqian Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ke He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaopeng Duan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rui Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zuguang Wu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Guadarrama Bello D, Fouillen A, Badia A, Nanci A. Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14924-14932. [PMID: 32155329 DOI: 10.1021/acsami.0c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have evaluated the response to nanotopography of CHO-K1 cells that express wild-type paxillin or paxillin with mutations at serine 273 that inhibit phosphorylation. Cells were grown on nanoporous and polished titanium surfaces. With all cell types, immunofluorescence showed that adhesion and spreading were minimally affected on the treated surface and that the actin filaments were more abundant and well-aligned. Scanning electron microscopy revealed changes in cell shape and abundant filopodia with lateral nanoprotrusions in response to nanoporosity. Gene expression of proteins associated with cellular adhesion and protrusions was significantly increased on the nanoporous surface regardless of the cell type. In particular, α-actinin, Rac1, Cdc42, and ITGα1 were upregulated in S273 cells with alanine substitutions, whereas FAK, Pxn, and Src were downregulated, leading to improved focal adhesion formation. These findings suggest that the surface nanoporosity can "compensate for" the genetic mutations that affect the biomechanical relationship of cells to surfaces.
Collapse
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec H3C3J7, Canada
| |
Collapse
|
8
|
Bilek O, Fialova T, Otahal A, Adam V, Smerkova K, Fohlerova Z. Antibacterial activity of AgNPs–TiO 2 nanotubes: influence of different nanoparticle stabilizers. RSC Adv 2020; 10:44601-44610. [PMID: 35517148 PMCID: PMC9058477 DOI: 10.1039/d0ra07305a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Enhanced antibacterial properties of nanomaterials such as TiO2 nanotubes (TNTs) and silver nanoparticles (AgNPs) have attracted much attention in biomedicine and industry. The antibacterial properties of nanoparticles depend, among others, on the functionalization layer of the nanoparticles. However, the more complex information about the influence of different functionalization layers on antibacterial properties of nanoparticle decorated surfaces is still missing. Here we show the array of ∼50 nm diameter TNTs decorated with ∼50 nm AgNPs having different functionalization layers such as polyvinylpyrrolidone, branched polyethyleneimine, citrate, lipoic acid, and polyethylene glycol. To assess the antibacterial properties, the viability of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) has been assessed. Our results showed that the functional layer of nanoparticles plays an important role in antibacterial properties and the synergistic effect such nanoparticles and TiO2 nanotubes have had different effects on adhesion and viability of G− and G+ bacteria. These findings could help researchers to optimally design any surfaces to be used as an antibacterial including the implantable titanium biomaterials. Synergictic antibacterial effect of AgNPs–TiO2 nanotubes is influenced by different nanoparticle stabilizers.![]()
Collapse
Affiliation(s)
- Ondrej Bilek
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- Brno
- Czech Republic
| | - Alexandr Otahal
- Department of Microelectronics
- Brno University of Technology
- Brno
- Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Kristyna Smerkova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Zdenka Fohlerova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Microelectronics
| |
Collapse
|
9
|
Ng S, Sopha H, Zazpe R, Spotz Z, Bijalwan V, Dvorak F, Hromadko L, Prikryl J, Macak JM. TiO 2 ALD Coating of Amorphous TiO 2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing. Front Chem 2019; 7:38. [PMID: 30775363 PMCID: PMC6367259 DOI: 10.3389/fchem.2019.00038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/14/2019] [Indexed: 12/02/2022] Open
Abstract
The present work presents a strategy to stabilize amorphous anodic self-organized TiO2 nanotube layers against morphological changes and crystallization upon extensive water soaking. The growth of needle-like nanoparticles was observed on the outer and inner walls of amorphous nanotube layers after extensive water soakings, in line with the literature on water annealing. In contrary, when TiO2 nanotube layers uniformly coated by thin TiO2 using atomic layer deposition (ALD) were soaked in water, the growth rates of needle-like nanoparticles were substantially reduced. We investigated the soaking effects of ALD TiO2 coatings with different thicknesses and deposition temperatures. Sufficiently thick TiO2 coatings (≈8.4 nm) deposited at different ALD process temperatures efficiently hamper the reactions between water and F− ions, maintain the amorphous state, and preserve the original tubular morphology. This work demonstrates the possibility of having robust amorphous 1D TiO2 nanotube layers that are very stable in water. This is very practical for diverse biomedical applications that are accompanied by extensive contact with an aqueous environment.
Collapse
Affiliation(s)
- Siowwoon Ng
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hanna Sopha
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia.,Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Raul Zazpe
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia.,Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Zdenek Spotz
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vijay Bijalwan
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Filip Dvorak
- Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Ludek Hromadko
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia.,Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Jan Prikryl
- Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Jan M Macak
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia.,Faculty of Chemical Technology, Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| |
Collapse
|
10
|
Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2019; 14:457-468. [PMID: 30666107 PMCID: PMC6330981 DOI: 10.2147/ijn.s193569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200082, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang 110819, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110000, China
| | - Zeming Lei
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xi Li
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
| |
Collapse
|
11
|
Voltrova B, Hybasek V, Blahnova V, Sepitka J, Lukasova V, Vocetkova K, Sovkova V, Matejka R, Fojt J, Joska L, Daniel M, Filova E. Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface. RSC Adv 2019; 9:11341-11355. [PMID: 35520235 PMCID: PMC9062999 DOI: 10.1039/c9ra00761j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Nanostructured cpTi surfaces affected Saos-2 cell adhesion, proliferation, and osteogenic differentiation as well as the nanomechanical properties of the surface.
Collapse
|
12
|
Pawlik A, Socha RP, Hubalek Kalbacova M, Sulka GD. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Colloids Surf B Biointerfaces 2018; 171:58-66. [PMID: 30007219 DOI: 10.1016/j.colsurfb.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Nowadays, titanium and its alloys are the most commonly used implantable materials. The surface topography and chemistry of titanium-based implants are responsible for osseointegration. One of the methods to improve biocompatibility of Ti implants is a modification with sodium hydroxide (NaOH) or 3-aminopropyltriethoxysilane (APTES). In the present study, anodic titanium dioxide (ATO) layers were electrochemically fabricated, and then immersed in a NaOH solution or in NaOH and APTES solutions. The functionalized samples were characterized by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). All samples were examined as drug delivery systems and scaffolds for cell culturing. Based on the parameters of the fitted desorption-desorption-diffusion (DDD) model parameters, it was concluded that the modification with NaOH increased the amount of released ibuprofen and inhibited the release process. Osteoblast-like cell line (SAOS-2) was used to investigate the cell response on the non-modified and modified ATO samples. The MTS test and immunofluorescent staining were carried out to examine cell adhesion and proliferation. The data showed that the modification of nanoporous TiO2 layers with small molecules such as APTES enhanced metabolic activity of adhered cells compared with the non-modified and NaOH-modified TiO2 layers. In addition, the cells had a polygonal-like morphology with distinct projecting actin filaments and were well dispersed over the whole analyzed surface.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry Jagiellonian University in Krakow, Gronostajowa 2, 30387 Krakow, Poland
| | - Robert P Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U nemocnice 5, 128 53 Prague, Czech Republic.
| | - Grzegorz D Sulka
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry Jagiellonian University in Krakow, Gronostajowa 2, 30387 Krakow, Poland.
| |
Collapse
|
13
|
Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals 2018; 31:457-476. [DOI: 10.1007/s10534-018-0113-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
|
14
|
Li M, Yang Y. Nanoscale TiO 2 nanotubes as a basis for governing cell behaviors and application challenges. Int J Nanomedicine 2017; 12:575-576. [PMID: 28144139 PMCID: PMC5245973 DOI: 10.2147/ijn.s128749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Min Li
- Department of Oncology, Changsha Central Hospital, Changsha, People's Republic of China
| | - Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
16
|
Alves SA, Ribeiro AR, Gemini-Piperni S, Silva RC, Saraiva AM, Leite PE, Perez G, Oliveira SM, Araujo JR, Archanjo BS, Rodrigues ME, Henriques M, Celis JP, Shokuhfar T, Borojevic R, Granjeiro JM, Rocha LA. TiO2nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv 2017. [DOI: 10.1039/c7ra08263k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2nanotubes enriched with Ca, P, and Zn by reverse polarization anodization, are promising bio-selective functional structures for osseointegrated titanium implants.
Collapse
|
17
|
Liu X, Tian A, You J, Zhang H, Wu L, Bai X, Lei Z, Shi X, Xue X, Wang H. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2016; 11:5743-5755. [PMID: 27843315 PMCID: PMC5098752 DOI: 10.2147/ijn.s113674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To endow implants with both short- and long-term antibacterial activities without impairing their biocompatibility, novel Ti–Ag alloy substrates with different proportions of Ag (1, 2, and 4 wt% Ag) were generated with nanotubular coverings (TiAg-NT). Methods Unlike commercial pure Ti and titania nanotube, the TiAg-NT samples exhibited short-term antibacterial activity against Staphylococcus aureus (S. aureus), as confirmed by scanning electron microscopy and double staining with SYTO 9 and propidium iodide. A film applicator coating assay and a zone of inhibition assay were performed to investigate the long-term antibacterial activities of the samples. The cellular viability and cytotoxicity were evaluated through a Cell Counting Kit-8 assay. Annexin V-FITC/propidium iodide double staining was used to assess the level of MG63 cell apoptosis on each sample. Results All of the TiAg-NT samples, particularly the nanotube-coated Ti–Ag alloy with 2 wt% Ag (Ti2%Ag-NT), could effectively inhibit bacterial adhesion and kill the majority of adhered S. aureus on the first day of culture. Additionally, the excellent antibacterial abilities exhibited by the TiAg-NT samples were sustained for at least 30 days. Although Ti2%Ag-NT had less biocompatibility than titania nanotube, its performance was satisfactory, as demonstrated by the higher cellular viability and lower cell apoptosis rate obtained with it compared with those achieved with commercial pure Ti. The Ti1%Ag-NT and Ti4%Ag-NT samples did not yield good cell viability. Conclusion This study indicates that the TiAg-NT samples can prevent biofilm formation and maintain their antibacterial ability for at least 1 month. Ti2%Ag-NT exhibited better antibacterial ability and biocompatibility than commercial pure Ti, which could be attributed to the synergistic effect of the presence of Ag (2 wt%) and the morphology of the nanotubes. Ti2%Ag-NT may offer a potential implant material that is capable of preventing implant-related infection.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Ang Tian
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Zeming Lei
- Department of Orthopedics, The People's Hospital of China Medical University
| | - Xiaoguo Shi
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Xiangxin Xue
- Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological Utilization Technology and Boron Materials, Northeastern University
| | - Hanning Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
18
|
Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZJ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK. TiO 2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 2016; 11:4819-4834. [PMID: 27703349 PMCID: PMC5036548 DOI: 10.2147/ijn.s108847] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.
Collapse
Affiliation(s)
- Qun Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Jian-Ying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hua-Qiong Li
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Allan Zi-Jian Zhao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Yi Wang
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
| | - Salem S Al-Deyab
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yue-Kun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou
| |
Collapse
|
19
|
Shi X, Xu Q, Tian A, Tian Y, Xue X, Sun H, Yang H, Dong C. Antibacterial activities of TiO2 nanotubes on Porphyromonas gingivalis. RSC Adv 2015. [DOI: 10.1039/c5ra00804b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potential impacts of TiO2 nanotubes on Porphyromonas gingivalis growth and drug resistance were investigated. TiO2 nanotubes antibacterial performance can be manipulated with the photocatalytic activity as well as the geometry characteristic.
Collapse
Affiliation(s)
- Xiaoguo Shi
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing
- Institute of New Energy
- China University of Petroleum
- Beijing 102249
- China
| | - Ang Tian
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Yulou Tian
- School of Stomatology
- Hospital of Stomatology
- China Medical University
- Shenyang 110001
- China
| | - Xiangxin Xue
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Hongjing Sun
- School of Stomatology
- Hospital of Stomatology
- China Medical University
- Shenyang 110001
- China
| | - He Yang
- College of Materials and Metallurgy
- Northeastern University
- Shenyang 110819
- China
| | - Chenbo Dong
- Department of Civil and Environmental Engineering
- Rice University
- Houston
- USA
| |
Collapse
|