1
|
Small Peptide-Doxorubicin Co-Assembly for Synergistic Cancer Therapy. Molecules 2020; 25:molecules25030484. [PMID: 31979298 PMCID: PMC7036863 DOI: 10.3390/molecules25030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022] Open
Abstract
Design of elaborated nanomaterials to improve the therapeutic efficacy and mitigate the side effects of chemotherapeutic anticancer drugs, such as Doxorubicin (Dox), is significant for cancer treatment. Here, we describe a co-assembled strategy, where amphiphile short peptides are co-assembled with Doxorubicin to form nanoscale particles for enhanced delivery of Dox. Two kinds of short peptides, Fmoc-FK (FK) and Fmoc-FKK (FKK), are synthesized. Through adjusting the component ratio of peptide and Dox, we obtain two kinds of co-assembled nanoparticles with homogeneous size distributions. These nanoparticles show several distinct characteristics. First, they are pH-responsive as they are stable in alkaline and neutral conditions, however, de-assembly at acidic pH enables selective Dox release in malignant cancer cells. Second, the nanoparticles show an average size of 50–100 nm with positive charges, making them effective for uptake by tumor cells. Moreover, the side effects of Dox on healthy cells are mitigated due to decreased exposure of free-Dox to normal cells. To conclude, the co-assembled peptide-Dox nanoparticles exhibit increased cellular uptake compared to free-Dox, therefore causing significant cancer cell death. Further apoptosis and cell cycle analysis indicates that there is a synergistic effect between the peptide and Doxorubicin.
Collapse
|
2
|
Qiu L, Zhang H, Wang B, Zhan Y, Xing C, Pan CY. CO 2-Responsive Nano-Objects with Assembly-Related Aggregation-Induced Emission and Tunable Morphologies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1348-1358. [PMID: 31815411 DOI: 10.1021/acsami.9b18792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CO2-responsive polymeric nano-objects with assembly-related aggregation-induced emission (AIE) are obtained via polymerization-induced self-assembly (PISA) of 2-(dimethylamino)ethyl methacrylate (DMAEMA), 2-(4-formylphenoxy)ethyl methacrylate (MAEBA), and 4-(1,2,2-triphenylvinyl)phenyl methacrylate (TPEMA). These nano-objects exhibit, depending on the feed of MAEBA, a morphology evolution process from spherical micelles to vesicles. Due to the presence of DMAEMA units, CO2 promotes morphology transformation of the nano-objects from spheres to a mixture of "jellyfish" and vesicles and vesicles to complex vesicles. Moreover, TPEMA endows the AIE feature to these nano-objects, offering a strategy to monitor the morphology evolution process in real time. Thus, this approach is significant for exploring the assembly mechanism of copolymer in polymerization-induced self-assembly and designing multistimuli-responsive polymeric nanomaterials with tunable morphologies and sizes.
Collapse
Affiliation(s)
| | | | | | | | | | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , People's Republic of China
| |
Collapse
|
3
|
Liu C, Fei YY, Zhang HL, Pan CY, Hong CY. Effective Construction of Hyperbranched Multicyclic Polymer by Combination of ATRP, UV-Induced Cyclization, and Self-Accelerating Click Reaction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02192] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-yang Fei
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-long Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-yuan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Fan W, Li J, Yuan L, Chen J, Wang Z, Wang Y, Guo C, Mo X, Yan Z. Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Deliv 2018; 25:1004-1012. [PMID: 29667446 PMCID: PMC6058480 DOI: 10.1080/10717544.2018.1461279] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of joint disease and a leading cause of physical disability, there is an urgent need to attenuate the progression of OA. Intra-articular (IA) injection is an effective treatment for joints diseases, however, the therapeutic effects mostly depend on the efficacy of drug duration in joints. Drug delivery system can provide drug-controlled release and reduce the number of IA injection. In this study, amphiphilic polyurethanes with pendant amino group were synthesized and amide bonds were formed between the amine group of polyurethane and the carboxyl group of kartogenin (KGN), a small molecular reported to show both regenerative and protective effects on cartilage. Our results showed that KGN-conjugated polyurethane nanoparticles (PN-KGN) were spherical and regular in shape with an average size of 25 nm and could sustained and controlled release of KGN in vitro. PN-KGN showed no cytotoxicity and pro-inflammatory effects on chondrocytes. The therapeutic effects in OA model showed that IA injection of KGN could attenuate the progress of OA, however, the cartilage degeneration became obviously at 12 weeks with matrix loss and vertical fissures. By contrast, IA injection of PN-KGN showed less cartilage degeneration with significant lower OARSI scores even at 12 weeks, indicating PN-KGN could further arrest the development of OA. Immunohistochemistry also validated that IA injection of PN-KGN retained the normal compositions of cartilage matrix, with much stronger Col II staining and less Col I staining. In conclusion, IA injection of PN-KGN is a better potential strategy to treat OA, with long-time cartilage protection and less IA injections.
Collapse
Affiliation(s)
- Wenshuai Fan
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Jinghuan Li
- b Department of Hepatic Oncology , Liver Cancer Institute, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Liu Yuan
- c Biomaterials and Tissue Engineering Lab , College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China.,d State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering, Donghua University , Shanghai , China
| | - Jifei Chen
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Zhe Wang
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Yiming Wang
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Changan Guo
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Xiumei Mo
- c Biomaterials and Tissue Engineering Lab , College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China.,d State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering, Donghua University , Shanghai , China
| | - Zuoqin Yan
- a Department of Orthopedics , Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
5
|
Qiu L, Li JW, Hong CY, Pan CY. Silver Nanoparticles Covered with pH-Sensitive Camptothecin-Loaded Polymer Prodrugs: Switchable Fluorescence "Off" or "On" and Drug Delivery Dynamics in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40887-40897. [PMID: 29088537 DOI: 10.1021/acsami.7b14070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A unique drug delivery system, in which silver nanoparticles (AgNPs) are covered with camptothecin (CPT)-based polymer prodrug, has been developed, and the polymer prodrug, in which the CPT is linked to the polymer side chains via an acid-labile β-thiopropionate bond, is prepared by RAFT polymerization. For poly(2-(2-hydroxyethoxy)ethyl methacrylate-co-methacryloyloxy-3-thiahexanoyl-camptothecin)@AgNPs [P(HEO2MA-co-MACPT)@AgNPs], the polymer thickness on the AgNP surface is around 5.9 nm (TGA method). In vitro tests in buffer solutions at pH = 7.4 reveal that fluorescence of the CPT in the hybrid nanoparticles is quenched due to the nanoparticle surface energy transfer (NSET) effect, but under acidic conditions, the CPT fluorescence is gradually recovered with gradual release of the CPT molecules from the hybrid nanoparticles through cleavage of the acid-labile bond. The NSET "on" and "off" is induced by the CPT-AgNP distance change. This unique property makes it possible to track the CPT delivery and release process from the hybrid nanoparticles in the living cells in a real-time manner. The internalization and intracellular releasing tests of the hybrid nanoparticles in the HeLa cells demonstrate that the lysosome containing the hybrid nanoparticles displays CPT blue fluorescence due to release of the CPT under acidic conditions, and the drug-releasing kinetics shows fluorescence increase of the released CPT with incubation time. The cytotoxicity of hybrid nanoparticles is dependent on activity of the acid-labile bond. Therefore, this is a potential efficient drug delivery system in cancer therapy and a useful approach to study the mechanism of release process in the cells.
Collapse
Affiliation(s)
- Liang Qiu
- Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jia-Wei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Sanford MJ, Van Zee NJ, Coates GW. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem Sci 2017; 9:134-142. [PMID: 29629081 PMCID: PMC5868299 DOI: 10.1039/c7sc03643d] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 01/15/2023] Open
Abstract
A versatile catalyst system for the synthesis of narrow dispersity polyesters from readily available epoxides and anhydrides is reported.
The alternating copolymerization of epoxides and cyclic anhydrides is an increasingly popular route to aliphatic polyesters that are of interest as biodegradable replacements for petroleum-based polymers and for use in the biomedical field. However, broad and bimodal molecular weight distributions in these polymerizations continues to be an issue, limiting synthesis of multiblock copolymers. By use of a bifunctional catalytic system, the reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides gives unimodal polymers with Đ values generally less than 1.07. This allowed for the formation of well-defined triblock copolymers. Additionally, by incorporating both aldehyde and alkene functionalities into the polymer, orthogonal post-polymerization modification was achieved, giving access to well-defined highly modifiable aliphatic polyesters.
Collapse
Affiliation(s)
- Maria J Sanford
- Dept. of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853-1301 , USA .
| | - Nathan J Van Zee
- Dept. of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853-1301 , USA .
| | - Geoffrey W Coates
- Dept. of Chemistry and Chemical Biology , Baker Laboratory , Cornell University , Ithaca , NY 14853-1301 , USA .
| |
Collapse
|
7
|
Wen YH, Lee TY, Fu PC, Lo CL, Chiang YT. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting. Polymers (Basel) 2017; 9:polym9060213. [PMID: 30970893 PMCID: PMC6432258 DOI: 10.3390/polym9060213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin) (HBD) in which doxorubicin (DOX) was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ), to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.
Collapse
Affiliation(s)
- Yu-Han Wen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Tsung-Ying Lee
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Ping-Chuan Fu
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Yi-Ting Chiang
- Department of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
8
|
Abstract
Drug molecules transformed into nanoparticles or endowed with nanostructures with or without the aid of carrier materials are referred to as "nanomedicines" and can overcome some inherent drawbacks of free drugs, such as poor water solubility, high drug dosage, and short drug half-life in vivo. However, most of the existing nanomedicines possess the drawback of low drug-loading (generally less than 10%) associated with more carrier materials. For intravenous administration, the extensive use of carrier materials might cause systemic toxicity and impose an extra burden of degradation, metabolism, and excretion of the materials for patients. Therefore, on the premise of guaranteeing therapeutic effect and function, reducing or avoiding the use of carrier materials is a promising alternative approach to solve these problems. Recently, high drug-loading nanomedicines, which have a drug-loading content higher than 10%, are attracting increasing interest. According to the fabrication strategies of nanomedicines, high drug-loading nanomedicines are divided into four main classes: nanomedicines with inert porous material as carrier, nanomedicines with drug as part of carrier, carrier-free nanomedicines, and nanomedicines following niche and complex strategies. To date, most of the existing high drug-loading nanomedicines belong to the first class, and few research studies have focused on other classes. In this review, we investigate the research status of high drug-loading nanomedicines and discuss the features of their fabrication strategies and optimum proposal in detail. We also point out deficiencies and developing direction of high drug-loading nanomedicines. We envision that high drug-loading nanomedicines will occupy an important position in the field of drug-delivery systems, and hope that novel perspectives will be proposed for the development of high drug-loading nanomedicines.
Collapse
Affiliation(s)
- Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Youshen Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
9
|
Zhang WJ, Hong CY, Pan CY. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery. Biomacromolecules 2016; 17:2992-9. [DOI: 10.1021/acs.biomac.6b00819] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y, Dai L. A Simple Dual-pH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17109-17117. [PMID: 27280955 DOI: 10.1021/acsami.6b04247] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To precisely deliver drug molecules at a targeted site and in a controllable manner, there has been great interest in designing a synergistical drug delivery system that can achieve both surface charge-conversion and controlled release of a drug in response to different stimuli. Here we outline a simple method to construct an intelligent drug carrier, which can respond to two different pH values, therefore achieving charge conversion and chemical-bond-cleavage-induced drug release in a stepwise fashion. This drug carrier comes from the self-assembly of a block copolymer-DOX conjugate synthesized through a Schiff base reaction between poly(2-(diisopropylamino)ethyl methacrylate-b-poly(4-formylphenyl methacrylate-co-polyethylene glycol monomethyl ether methacrylate) (PDPA-b-P(FPMA-co-OEGMA)) and DOX. The surface charge of the BCP-DOX micelles reversed from negative to positive when encountering a weakly acidic environment due to the protonation of PDPA segments. In vitro cellular uptake measurement shows that the cellular uptake and internalization of the BCP-DOX micelles can be significantly enhanced at pH ∼ 6.5. Moreover, this drug carrier exhibits a pH-dependent drug release owing to the cleavage of the imine bond at pH < 5.5. With this dual-pH responsive feature, these micelles may have the ability to precisely deliver DOX to the cancer cells.
Collapse
Affiliation(s)
- Jie Mao
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yang Li
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Tong Wu
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Conghui Yuan
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Birong Zeng
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yiting Xu
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University , Xiamen 361005, People's Republic of China
| | - Lizong Dai
- College of Materials, Xiamen University , Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University , Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Mielańczyk A, Neugebauer D. Designing Drug Conjugates Based on Sugar Decorated V-Shape and Star Polymethacrylates: Influence of Composition and Architecture of Polymeric Carrier. Bioconjug Chem 2015; 26:2303-10. [DOI: 10.1021/acs.bioconjchem.5b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Mielańczyk
- Department of Physical Chemistry
and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry
and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|