1
|
Wang C, Zhang Y, Kong W, Rong X, Zhong Z, Jiang L, Chen S, Li C, Zhang F, Jiang J. Delivery of miRNAs Using Nanoparticles for the Treatment of Osteosarcoma. Int J Nanomedicine 2024; 19:8641-8660. [PMID: 39188861 PMCID: PMC11346496 DOI: 10.2147/ijn.s471900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.
Collapse
Affiliation(s)
- Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Yihong Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Weihui Kong
- Department of Stomatology, the First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ziming Zhong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Lei Jiang
- Department of Geriatric Medicine, Changchun Central Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Shuhan Chen
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Chuang Li
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
2
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
3
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
GABPB1-AS1 Promotes the Development of Osteosarcoma by Targeting SP1 and Activating the Wnt/ β-Catenin Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8468896. [PMID: 35342417 PMCID: PMC8956396 DOI: 10.1155/2022/8468896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
In this study, the role of GABPB1-AS1 in osteosarcoma (OS) was analyzed. The expression of GABPB1-AS1 in different OS cell lines U2OS, HOS, MG63, and hFOB1.19 was detected. SiRNA GABPB1-AS1 was transfected with U2OS and HOS cell lines. The effects of GABPB1-AS1 silencing on proliferation, clonal formation, and migration of U2OS and HOS were detected by CCK-8 method, plate cloning method, and Transwell chamber. Western blot analysis was used to detect the protein levels of SP1, Wnt, β-catenin, c-Myc, and SOX2 in osteosarcoma cells. The binding relationship between GABPB1-AS1 and miR-199a-3p in OS cells was detected by a dual-luciferase reporter gene assay. Results showed that GABPB1-AS1 was higher in OS cells than that in hFOB1.19. Silencing GABPB1-AS1 inhibited the proliferation, clonal formation, migration, and epithelial-mesenchymal transformation of U2OS and HOS. There was a binding relationship between GABPB1-AS1 and miR-199a-3p in OS cells. GABPB1-AS1 mediated osteosarcoma cells via the SP1/Wnt/β-catenin signaling pathway. This study suggested that GABPB1-AS1 plays a carcinogenic role in OS through the SP1/Wnt/β-catenin signaling pathway through competitive binding and inhibition of miR-199a-3p.
Collapse
|
5
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
6
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Lei Y, Junxin C, Yongcan H, Xiaoguang L, Binsheng Y. Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment. J Bone Oncol 2020; 25:100322. [PMID: 33083216 PMCID: PMC7554654 DOI: 10.1016/j.jbo.2020.100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour, with a peak incidence in adolescents, and the five-year survival rate of patients with metastasis or recurrence is much lower than that of patients without metastasis and recurrence. OS is initiated and develops in a complex tumour microenvironment (TME) that contains many different components, such as osteoblasts, osteoclasts, mesenchymal stem cells, fibroblasts, immune cells, extracellular matrix (ECM), extracellular vesicles, and cytokines. The extensive interaction between OS and the TME underlies OS progression. Therefore, rather than targeting OS cells, targeting the key factors in the TME may yield novel therapeutic approaches. MicroRNAs (miRNAs) play multiple roles in the biological behaviours of OS, and recent studies have implied that miRNAs are involved in mediating the communication between OS cells and the surrounding TME. Here, we review the TME landscape and the miRNA dysregulation of OS, describe the role of the altered TME in OS development and highlight the role of miRNA in the crosstalk between OS cells and the TME.
Collapse
Affiliation(s)
- Yong Lei
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Junxin
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huang Yongcan
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liu Xiaoguang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Yu Binsheng
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
8
|
Zhang G, Li Y, Xu J, Xiong Z. Advances in the role of miRNAs in the occurrence and development of osteosarcoma. Open Med (Wars) 2020; 15:1003-1011. [PMID: 33336056 PMCID: PMC7718646 DOI: 10.1515/med-2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Guanyu Zhang
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yiran Li
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
9
|
Huang WK, Yeh CN. The Emerging Role of MicroRNAs in Regulating the Drug Response of Cholangiocarcinoma. Biomolecules 2020; 10:biom10101396. [PMID: 33007962 PMCID: PMC7600158 DOI: 10.3390/biom10101396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common biliary malignancy, and has a poor prognosis. The median overall survival with the standard-of-care chemotherapy (Gemcitabine and cisplatin) in patients with advanced-stage CCA is less than one year. The limited efficacy of chemotherapy or targeted therapy remains a major obstacle to improving survival. The mechanisms involved in drug resistance are complex. Research efforts focusing on the distinct molecular mechanisms underlying drug resistance should prompt the development of treatment strategies that overcome chemoresistance or targeted drug resistance. MicroRNAs (miRNAs) are a class of evolutionarily conserved, short noncoding RNAs regulating gene expression at the post-transcriptional level. Dysregulated miRNAs have been shown to participate in almost all CCA hallmarks, including cell proliferation, migration and invasion, apoptosis, and the epithelial-to-mesenchymal transition. Emerging evidence demonstrates that miRNAs play a role in regulating responses to chemotherapy and targeted therapy. Herein, we present an overview of the current knowledge on the miRNA-mediated regulatory mechanisms underlying drug resistance among CCA. We also discuss the application of miRNA-based therapeutics to CCA, providing the basis for innovative treatment approaches.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Chun-Nan Yeh
- Department of Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3281200
| |
Collapse
|
10
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020; 25:E3620. [PMID: 32784890 PMCID: PMC7463484 DOI: 10.3390/molecules25163620] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a global health challenge. There are drawbacks to conventional chemotherapy such as poor bioavailability, development of drug resistance and severe side effects. Novel drug delivery system may be an alternative to optimize therapeutic effects. When such systems consist of natural materials, they offer important advantages: they are usually highly biocompatible, biodegradable, nontoxic and nonimmunogenic. Furthermore, natural materials can be easily modified for conjugation with a wide range of therapeutic agents and targeting ligands, according to the therapeutic purpose. This article reviews different natural ingredients and their applications in drug delivery systems for cancer therapy. Firstly, an overview of the polysaccharides and protein-based polymers that have been extensively investigated for drug delivery are described. Secondly, recent advances in using various natural ingredient-based polymeric nanoparticles for cancer therapy are reviewed. The characteristics of these delivery systems are summarized, followed by a discussion of future development and clinical potential. This review aims to summarize current knowledge and provide a basis for developing effective tailor-made formulations for cancer therapy in the future.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
12
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
13
|
Ye M, Misra SK, De AK, Ostadhossein F, Singh K, Rund L, Schook L, Pan D. Design, Synthesis, and Characterization of Globular Orphan Nuclear Receptor Regulator with Biological Activity in Soft Tissue Sarcoma. J Med Chem 2018; 61:10739-10752. [PMID: 30375864 DOI: 10.1021/acs.jmedchem.8b01387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sarcomas are rare and heterogeneous cancer variants of mesenchymal origin. Their genetic heterogeneity coupled with uncertain histogenesis makes them difficult to treat and results in poor prognosis. In this work, we show that structure-based drug discovery involving computational modeling can be used to identify a new retinoid X receptor (RXR) agonist ligand with a bis(indolyl)methane scaffold. This agent co-self-assembles with an amphiphilic diblock copolymer resulting in nanoparticles (Nano-RXR) with excellent kinetic stability, which were evaluated for efficacy and safety in transformed sarcoma cells, 63-3 Cre and 141-10 Cre of pig origin, and in rodent xenograft models. Responses at gene and protein levels established the treatment approach as a highly effective RXR agonist across cell, rodent, and "Oncopig" models. Interestingly, Nano-RXR was not only able to modulate metabolic and transporter genes related to orphan nuclear receptors but also played a major role in modulating programmed cell death in sarcomas developed in Oncopigs.
Collapse
Affiliation(s)
- Mao Ye
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Santosh K Misra
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Arun K De
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Fatemeh Ostadhossein
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kuldeep Singh
- Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Laurie Rund
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lawrence Schook
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute of Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute , Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States.,Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Carle-Illinois College of Medicine , Urbana , Illinois 61801 , United States
| |
Collapse
|
14
|
Labatut AE, Mattheolabakis G. Non-viral based miR delivery and recent developments. Eur J Pharm Biopharm 2018; 128:82-90. [PMID: 29679644 DOI: 10.1016/j.ejpb.2018.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
miRNAs are promising therapeutic targets or tools for the treatment of numerous diseases, with most prominently, cancer. The inherent capacity of these short nucleic acids to regulate multiple cancer-related pathways simultaneously has prompted strong research on understanding miR functions and their potential use for therapeutic purposes. A key determinant of miR therapeutics' potential for treatment is their delivery. Viral and non-viral vectors attempt to address the major limitations associated with miR delivery, but several hurdles have been identified. Here, we present an overview on the general limitations of miR delivery, and the delivery strategies exploited to overcome them. We provide an introduction on the advantages and disadvantages of viral and non-viral vectors, and we go into detail to analyze the most prominently used non-viral systems. We provide with an update on the most recent research on this topic and we describe the mechanism and limitations of the lipid-, polymer- and inorganic material- based miR delivery systems.
Collapse
Affiliation(s)
- Annalise Elizabeth Labatut
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States
| | - George Mattheolabakis
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States.
| |
Collapse
|
15
|
Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today 2018; 23:1344-1356. [PMID: 29551455 DOI: 10.1016/j.drudis.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle library engineered with tunable size, shape, and geometry will provide a better idea of targeting multicomponent of tumor microenvironment consisting of epithelial cells, tumor hypoxia, tumor immune cells and angiogenic blood vessels.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int J Mol Sci 2018. [PMID: 29534020 PMCID: PMC5877699 DOI: 10.3390/ijms19030838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a difficult to treat disease due to the absence of the three unique receptors estrogen, progesterone and herceptin-2 (HER-2). To improve the current therapy and overcome the resistance of TNBC, there is unmet need to develop an effective targeted therapy. In this regard, one of the logical and economical approaches is to develop a tumor hypoxia-targeting drug formulation platform for selective delivery of payload to the drug-resistant and invasive cell population of TNBC tumors. Toward this, we developed a Carbonic Anhydrase IX (CA IX) receptor targeting human serum albumin (HSA) carriers to deliver the potent anticancer drug, Paclitaxel (PTX). We used Acetazolamide (ATZ), a small molecule ligand of CA IX to selectively deliver HSA-PTX in TNBC cells. A novel method of synthesis involving copper free ‘click’ chemistry (Dibenzocyclooctyl, DBCO) moiety with an azide-labeled reaction partner, known as Strain-Promoted Alkyne Azide Cycloaddition (SPAAC) along with a desolvation method for PTX loading were used in the present study to arrive at the CA IX selective nano-carriers, HSA-PTX-ATZ. The anticancer effect of HSA-PTX-ATZ is higher compared to HSA, PTX and non-targeted HSA-PTX in MDA-MB-231 and MDA-MB-468 cells. The cell killing effect is associated with induction of early and late phases of apoptosis. Overall, our proof-of-concept study shows a promising avenue for hypoxia-targeted drug delivery that can be adapted to several types of cancers.
Collapse
|
17
|
Guan J, Liu Z, Xiao M, Hao F, Wang C, Chen Y, Lu Y, Liang J. MicroRNA-199a-3p inhibits tumorigenesis of hepatocellular carcinoma cells by targeting ZHX1/PUMA signal. Am J Transl Res 2017; 9:2457-2465. [PMID: 28559996 PMCID: PMC5446528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE MicroRNAs play an important role in cell proliferation, apoptosis, differentiation, and invasion by regulating the expression of various genes. For example, the downregulation of microRNA-199a-3p (miR-199a-3p) that is noted in numerous human malignancies, including hepatocellular carcinoma (HCC), results in a poor prognosis in patients with HCC. This finding suggests that miR-199a-3p overexpression in HCC could provide a new treatment approach. We explored this possibility by examining the effects of miR-199a-3p on the growth and apoptosis of HCC cells in vitro and vivo. METHODS The miR-199a-3p signaling pathway was examined using ZHX1 (zinc-fingers and homeoboxes-1) or PUMA (a p53 upregulated modulator of apoptosis) siRNA transfection to determine the effects of miR-199a-3p on growth and apoptosis of HepG2 cells in vitro. A subcutaneously implanted tumor model of HepG2 cells in nude mice was used to assess the effects of miR-199a-3p on the signaling pathway and tumorigenesis development in vivo. RESULTS miR-199a-3p inhibited growth and induced apoptosis of HepG2 cells in vitro. These effects were accompanied by upregulation of ZHX1 and PUMA. Targeting ZHX1 inhibited upregulation of PUMA after miR-199a-3p transfection. In addition, miR-199a-3p inhibited Bcl2 expression, but increased Bax and cleaved caspase-3 expression. Targeting PUMA or ZHX1 reversed the effect of miR-199a-3p, followed by upregulation of Bcl2 and downregulation of Bax and cleaved caspase-3, respectively. Furthermore, miR-199a-3p inhibited tumorigenesis of xenografts in nude mice. CONCLUSIONS miRNA-199a-3p could effectively prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related toZHX1-dependent PUMA signals.
Collapse
Affiliation(s)
- Jinping Guan
- Department of General Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Zimin Liu
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Menjing Xiao
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Chenghong Wang
- Department of Clinical Laboratory, Yuhuangding HospitalYantai, Shandong, China
| | - Yan Chen
- Department of Clinical Laboratory, Yuhuangding HospitalYantai, Shandong, China
| | - Yingying Lu
- Department of Pathology, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Jun Liang
- Department of Oncology, Peking University International HospitalBeijing, China
| |
Collapse
|
18
|
Yu C, Wang W. Relationship Between P15 Gene Mutation and Formation and Metastasis of Malignant Osteosarcoma. Med Sci Monit 2016; 22:656-61. [PMID: 26921270 PMCID: PMC4772913 DOI: 10.12659/msm.895022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background As a type of primary malignant bone tumor, osteosarcoma has high incidence and poor prognosis, and is predisposed for pulmonary metastasis. The abnormal expression of P15 gene directly participates in the invasion of various cancers. Therefore, this study investigated the gene mutation of P15 in both primary lesion and pulmonary metastasis lesion of osteosarcoma in a rat model, in an attempt to elucidate the value of P15 gene as a biological marker. Material/Methods A total of 60 SD rats were randomly divided into 2 groups. Model rats had injection of osteosarcoma UMR-106 cells (5×106) inoculated underneath the right forelimb skin, while control rats received saline injection instead. Six rats were sacrificed after 0, 1, 2, 4, and 6 weeks of the inoculation. Tissue samples from inoculation sites and lungs were extracted for measuring the tumor size. SP immunohistochemical (IHC) staining was used to detect the positive expression rate, while P15 gene mutation was detected by PCR method. Results With the elongation of inoculation time, tumor size was significantly increased (p<0.05). The positive expression rates in both primary and pulmonary metastasis lesions were also significantly elevated (p<0.05). The occurrence rate of P15 gene mutation in model rats was significantly elevated and showed a correlation with the tumor formation (r=0.998, p<0.05). Conclusions The P15 gene mutation was significantly correlated with osteosarcoma formation and metastasis towards the pulmonary tissue, suggesting its potency as a novel biological marker for early diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- ChangShui Yu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - WenBo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
19
|
Fonseca AC, Serra AC, Coelho JFJ. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J 2015; 6:22. [PMID: 26605001 PMCID: PMC4657262 DOI: 10.1186/s13167-015-0045-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a devastating disease, being responsible for 13 % of all deaths worldwide. One of the main challenges in treating cancer concerns the fact that anti-cancer drugs are not highly specific for the cancer cells and the "death" of healthy cells in the course of chemotherapy treatment is inevitable. In this sense, the use of drug delivery systems (DDS) can be seen as a powerful tool to minimize or overcome this very important issue. DDS can be designed to target specific tissues in order to mitigate side effects. Bioabsorbable polymers, due to their inherent characteristics, and because they can be synthesized in a variety of forms, are materials whose importance in the DDS for cancer therapy has risen significantly in the last years. This review intends to give an overview about the latest developments in the use of bioabsorbable polymers as DDS in cancer therapy, with special focus on nanoparticles, micelles, and implants.
Collapse
Affiliation(s)
- Ana C. Fonseca
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C. Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge F. J. Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
20
|
Sampson VB, Yoo S, Kumar A, Vetter NS, Kolb EA. MicroRNAs and Potential Targets in Osteosarcoma: Review. Front Pediatr 2015; 3:69. [PMID: 26380245 PMCID: PMC4547013 DOI: 10.3389/fped.2015.00069] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Asmita Kumar
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - Nancy S Vetter
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| |
Collapse
|