1
|
Alkaron W, Almansoori A, Balázsi K, Balázsi C. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4117. [PMID: 39203295 PMCID: PMC11356673 DOI: 10.3390/ma17164117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
Hydroxyapatite (HAp) polymer composites have gained significant attention due to their applications in bone regeneration and tooth implants. This review examines the synthesis, properties, and applications of Hap, highlighting various manufacturing methods, including wet, dry, hydrothermal, and sol-gel processes. The properties of HAp are influenced by precursor materials and are commonly obtained from natural calcium-rich sources like eggshells, seashells, and fish scales. Composite materials, such as cellulose-hydroxyapatite and gelatin-hydroxyapatite, exhibit promising strength and biocompatibility for bone and tissue replacement. Metallic implants and scaffolds enhance stability, including well-known titanium-based and stainless steel-based implants and ceramic body implants. Biopolymers, like chitosan and alginate, combined with Hap, offer chemical stability and strength for tissue engineering. Collagen, fibrin, and gelatin play crucial roles in mimicking natural bone composition. Various synthesis methods like sol-gel, hydrothermal, and solution casting produce HAp crystals, with potential applications in bone repair and regeneration. Additionally, the use of biowaste materials, like eggshells and snails or seashells, not only supports sustainable HAp production but also reduces environmental impact. This review emphasizes the significance of understanding the properties of calcium-phosphate (Ca-P) compounds and processing methods for scaffold generation, highlighting novel characteristics and mechanisms of biomaterials in bone healing. Comparative studies of these methods in specific applications underscore the versatility and potential of HAp composites in biomedical engineering. Overall, HAp composites offer promising solutions for improving patient outcomes in bone replacement and tissue engineering and advancing medical practices.
Collapse
Affiliation(s)
- Wasan Alkaron
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Alaa Almansoori
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Katalin Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| | - Csaba Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| |
Collapse
|
2
|
Stepanova M, Averianov I, Gofman I, Shevchenko N, Rubinstein A, Egorova T, Trulioff A, Nashchekina Y, Kudryavtsev I, Demyanova E, Korzhikova-Vlakh E, Korzhikov-Vlakh V. Drug Loaded 3D-Printed Poly(ε-Caprolactone) Scaffolds for Local Antibacterial or Anti-Inflammatory Treatment in Bone Regeneration. Polymers (Basel) 2023; 15:3957. [PMID: 37836006 PMCID: PMC10575412 DOI: 10.3390/polym15193957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Annual bone grafting surgeries due to bone fractures, resections of affected bones, skeletal anomalies, osteoporosis, etc. exceed two million worldwide. In this regard, the creation of new materials for bone tissue repair is one of the urgent tasks of modern medicine. Additive manufacturing, or 3D printing, offers great opportunities for the development of materials with diverse properties and designs. In this study, the one-pot technique for the production of 3D scaffolds based on poly(ε-caprolactone) (PCL) loaded with an antibiotic or anti-inflammatory drug was proposed. In contrast to previously described methods to prepare drug-containing scaffolds, drug-loaded PCL scaffolds were prepared by direct 3D printing from a polymer/drug blend. An investigation of the mechanical properties of 3D-printed scaffolds containing 0.5-5 wt% ciprofloxacin (CIP) or dexamethasone (DEX) showed almost no effect of the drug (compression modulus ~70-90 MPa) compared to unfilled PCL (74 MPa). At the same time, introducing the drug and increasing its content in the PCL matrix contributed to a 1.8-6.8-fold decrease in the specific surface area of the scaffold, depending on composition. The release of CIP and DEX in phosphate buffer solution and in the same buffer containing lipase revealed a faster release in enzyme-containing medium within 45 days. Furthermore, drug release was more intensive from scaffolds with a low drug load. Analysis of the release profiles using a number of mathematical dissolution models led to the conclusion that diffusion dominates over other probable factors. In vitro biological evaluation of the scaffolds containing DEX showed moderate toxicity against osteoblast-like and leukemia monocytic cells. Being 3D-printed together with PCL both drugs retain their biological activity. PCL/CIP and PCL/DEX scaffolds demonstrated antibacterial properties against Pseudomonas aeruginosa (a total inhibition after 48 h) and anti-inflammatory activity in experiments on TNFα-activated monocyte cells (a 4-time reduction in CD-54 expression relative to control), respectively.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
| | - Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
| | - Natalia Shevchenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
| | - Artem Rubinstein
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (A.R.); (A.T.); (I.K.)
| | - Tatiana Egorova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Andrey Trulioff
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (A.R.); (A.T.); (I.K.)
| | - Yulia Nashchekina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (A.R.); (A.T.); (I.K.)
- School of Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (I.A.); (I.G.); (N.S.); (E.K.-V.)
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| |
Collapse
|
3
|
Taheri-Ledari R, Jalali F, Heidari L, Ganjali F, Asl FR, Zarei-Shokat S, Forouzandeh-Malati M, Mohammadi A, Maleki A. An effective antimicrobial complex of nanoscale β-cyclodextrin and ciprofloxacin conjugated to a cell adhesive dipeptide. RSC Adv 2022; 12:35383-35395. [PMID: 36544467 PMCID: PMC9752432 DOI: 10.1039/d2ra05822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Today, various drug delivery systems (DDS) are utilized to carry and deliver the desired drugs to the targeted action area to reduce potential side effects and negative interactions. Nanomaterials are an excellent candidate for the delivery of potent drugs, as they enhance pharmacokinetic and pharmacodynamic properties. Herein, we present a new ciprofloxacin (CPFX) delivery system based on a polymeric nanocarrier (β-cyclodextrin) conjugated to a cell-adhesive dipeptide structure. Cyclodextrin (CD) is an inexpensive, easily accessible, biodegradable, and biocompatible material. Also, the conjugation of cysteine-arginine (CR) dipeptide to the CPFX/β-CD particles is carried out to enhance cell adhesion growth. Through accurate analysis, the drug content and release for a final product have been estimated to be ca. 32%. Overall, the antimicrobial effects of CPFX were considerably raised through a low dose of CPFX. The growth zone inhibition of CPFX/β-CD-CR particles on the staphylococcus aureus and the Escherichia coli bacterial cells was 5.5 ± 0.2 cm and 3.5 ± 0.2 cm, respectively. Hence, this therapeutic nano bioconjugate is an excellent candidate to be applied in antimicrobial applications with the minimum incorporated CPFX.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
- Department of Chemistry, Faculty of Basic Sciences, Ilam University P. O. Box 69315-516 Ilam Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
4
|
Agalya P, Cholan S, Prabu K, Suresh Kumar G, Karunakaran G, Shkir M, Kolesnikov E, Ramalingam S. Ultrasonic assisted in situ mineralization of hydroxyapatite nanoparticles in the presence of drug molecule: An insight on biowaste derived materials for the local drug delivery. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Rohmadi R, Harwijayanti W, Ubaidillah U, Triyono J, Diharjo K, Utomo P. In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:3223. [PMID: 34641039 PMCID: PMC8512377 DOI: 10.3390/polym13193223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. METHOD Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. RESULTS From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. SIGNIFICANCE The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%.
Collapse
Affiliation(s)
- Rohmadi Rohmadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Widyanita Harwijayanti
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Ubaidillah Ubaidillah
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Joko Triyono
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Kuncoro Diharjo
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Pamudji Utomo
- Department Orthopaedic Traumatology, Prof Dr. R. Soeharso Orthopaedic Hospital Surakarta/Faculty of Medicine, Universitas Sebelas Maret Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia;
| |
Collapse
|
7
|
Li L, Liu J, Zeng J, Li J, Liu Y, Sun X, Xu L, Li L. Complete Degradation and Detoxification of Ciprofloxacin by a Micro-/Nanostructured Biogenic Mn Oxide Composite from a Highly Active Mn 2+-Oxidizing Pseudomonas Strain. NANOMATERIALS 2021; 11:nano11071660. [PMID: 34202527 PMCID: PMC8304510 DOI: 10.3390/nano11071660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Ciprofloxacin (CIP), as a representative broad-spectrum antibiotic, poses a major threat to human health and the ecological environment as a result of its abuse and emissions. In this study, a highly active Mn2+-oxidizing bacterium, Pseudomonas sp. CCTCC M2014168, was induced to form micro-/nanostructured biogenic Mn oxide (BMO) aggregates through continuous culturing with 1 mmoL-1 Mn2+. Following the characterization of Mn4+ oxides and the micro-/nanostructures by scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction assays, the BMO composites were subjected to CIP degradation and detoxification in laboratory trials. High-performance liquid chromatograph (HPLC) analysis identified that the BMO composites were capable of completely degrading CIP, and HPLC with a mass spectrometer (LC/MS) assays identified three intermediates in the degradation pathway. The reaction temperature, pH and initial ciprofloxacin concentration substantially affected the degradation efficiency of CIP to a certain extent, and the metal ions Mg2+, Cu2+, Ni2+ and Co2+ exerted significant inhibitory effects on CIP degradation. A toxicity test of the degradation products showed that CIP was completely detoxified by degradation. Moreover, the prepared BMO composite exhibited a high capacity for repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade CIP in real natural water.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jie Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China;
| | - Yongxuan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou 514015, China;
- Correspondence: (L.X.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (J.L.); (J.Z.); (Y.L.); (X.S.)
- Correspondence: (L.X.); (L.L.)
| |
Collapse
|
8
|
Rotman SG, Moriarty TF, Nottelet B, Grijpma DW, Eglin D, Guillaume O. Poly(Aspartic Acid) Functionalized Poly(ϵ-Caprolactone) Microspheres with Enhanced Hydroxyapatite Affinity as Bone Targeting Antibiotic Carriers. Pharmaceutics 2020; 12:pharmaceutics12090885. [PMID: 32957602 PMCID: PMC7559286 DOI: 10.3390/pharmaceutics12090885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bone infection is a feared complication for patients with surgically fixed bone fractures and local antibiotic delivery is important in prophylaxis and treatment of these infections. Recent studies indicated that Staphylococcus aureus can penetrate bone tissue through micron-sized canaliculi and evade systemic and currently available local antibiotic treatments. Targeting bacteria within the bone requires highly efficient delivery of antimicrobials to the infected bone tissue. In this work, a biodegradable microsphere carrier loaded with antibiotics and with specific affinity to bone mineral was developed. Two widely used antibiotics, i.e., Gentamicin-dioctyl sulfosuccinate (GM-AOT) and Ciprofloxacin (CF) were embedded in poly(ϵ-caprolactone) (PCL) microspheres fabricated by oil-in-water emulsion techniques with carboxylated poly(vinyl alcohol) (cPVA) as surfactant. The carboxylic acid groups present at the Poly(ϵ-caprolactone)/cPVA (PCL-cPVA) microsphere surface were functionalized with aspartic acid oligomers (ASP) granting bone targeting properties. We report on cPVA synthesis, microsphere formulation, and antibiotic loading of PCL/cPVA-ASP microspheres. Antibiotic loaded PCL/cPVA-ASP microspheres show sustained release of its antibiotic load and can inhibit bacterial growth in vitro for up to 6 days. PCL/cPVA-ASP microspheres show enhanced affinity to mineralized substrates compared to non-functionalized PCL/cPVA microspheres. These findings support further development of these bone targeting antibiotic carriers for potential treatment of persistent bone infections.
Collapse
Affiliation(s)
- Stijn G. Rotman
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (S.G.R.); (T.F.M.); (D.E.)
- Department of Biomaterials Science and Technology, Faculty of Science and Technology and Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Thomas F. Moriarty
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (S.G.R.); (T.F.M.); (D.E.)
| | - Benjamin Nottelet
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France;
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology and Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (S.G.R.); (T.F.M.); (D.E.)
- Department of Biomaterials Science and Technology, Faculty of Science and Technology and Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Olivier Guillaume
- Institute of Materials Science and Technology, TU Wien, 1060 Vienna, Austria
- Correspondence:
| |
Collapse
|
9
|
Prowans P, Kowalczyk R, Wiszniewska B, Czapla N, Bargiel P, El Fray M. Bone Healing in the Presence of a Biodegradable PBS-DLA Copolyester and Its Composite Containing Hydroxyapatite. ACS OMEGA 2019; 4:19765-19771. [PMID: 31788608 PMCID: PMC6882124 DOI: 10.1021/acsomega.9b02539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The healing process of the fractured bone in a presence of poly(butylene succinate-butylene dilinoleate) (PBS-DLA) copolymer containing nanosized hydroxyapatite (HAP) particles has been investigated. The PBS-DLA material containing PBS hard segments and DLA soft segments (50:50 wt %) was used to prepare a polymer/ceramic composite with 30 wt % HAP. A new PBS-DLA copolymer showed a high elasticity of 500% and 15 MPa tensile strength. Addition of HAP improved tensile strength up to 25 MPa while high elasticity has been preserved going down only to 300% of elongation at break. A polymer nanocomposite was fabricated into small elastic polymer rods 15 mm long and 1 × 2 mm in cross section and used for tibia bone fixation in rats. Mallory trichrome staining indicated that new biodegradable copolymers and its composite containing HAP have triggered the most advanced bone healing of all tested materials, thus indicating their high potential for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Piotr Prowans
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Robert Kowalczyk
- Clinic
of Maxillofacial Surgery, Pomeranian Medical
University, ul. Unii
Lubelskiej 1, 71-252 Szczecin, Poland
| | - Barbara Wiszniewska
- Department
of Histology and Embryology, Pomeranian
Medical University, Al.
Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Norbert Czapla
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Piotr Bargiel
- Clinic
of Plastic, Endocrine and General Surgery, Pomeranian Medical University, ul. Siedlecka 2, 72-010 Police, Poland
| | - Miroslawa El Fray
- Department
of Polymer and Biomaterials Science, Faculty of Chemical Technology
and Engineering, West Pomeranian University
of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| |
Collapse
|
10
|
Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:51. [PMID: 31011810 DOI: 10.1007/s10856-019-6255-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/11/2019] [Indexed: 05/20/2023]
Abstract
Fabricating a bioartificial bone graft possessing structural, mechanical and biological properties mimicking the real bone matrix is a major challenge in bone tissue engineering. Moreover, the developed materials are prone to microbial invasion leading to biomaterial centered infections which might limit their clinical translation. In the present study, biomimetic nanofibrous scaffolds of Poly ɛ-caprolactone (PCL)/nano-hydroxyapatite (nHA) were electrospun with 1wt%, 5wt%, 10wt%, 15wt% and 30wt% of zinc oxide (ZnO) nanoparticles in order to understand the optimal concentration range of (ZnO) nanoparticles balancing both biocompatibility and osteoregeneration. The developed nanofibrous scaffolds were successfully characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), contact angle, fourier transform infrared spectroscopy (FTIR), wide-angle X-Ray diffraction (WAXD), brunaueremmett Teller (BET) surface area and tensile testing. Biocompatibility of the developed scaffolds at in vitro level was evaluated by culturing MG-63 cells and investigating the impact on cell viability, proliferation, protein adsorption, alkaline phosphatase (ALP) activity and biomineralization. The PCL/nHA scaffolds exhibited a 1.2-fold increase in cell viability and proliferation, while incorporation of ZnO nanoparticles to PCL/nHA imparted antimicrobial activity to the scaffolds with a progressive increase in the antimicrobial efficacy with increasing ZnO concentration. The results of cell viability were supported by ALP activity and mineralization assay, wherein, PCL/nHA/ZnO scaffolds showed higher ALP activity and better mineralization capacity as compared to pristine PCL. Although, the PCL/nHA/ZnO scaffolds with 10, 15 and 30wt% of ZnO particles exhibited superior antimicrobial efficacy against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria, a significant decrease in the cell viability and mechanical properties was observed at higher concentrations of ZnO namely 15 and 30%. Amongst the various ZnO concentrations studied optimal cell viability, antimicrobial effect and mechanical strength were observed at 10wt.% ZnO concentration. Thus, the present study revealed that the biomimetic tri-component PCL/nHA/ZnO scaffolds with ZnO concentration range of ≤ 10% could be ideal for achieving optimal biocompatibility (cell proliferation, biomineralization, and antimicrobial capacity) and mechanical stability thus making it a promising biomaterial substrate for bone tissue regeneration.
Collapse
Affiliation(s)
- Ajinkya A Shitole
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India
| | - Piyush W Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India
| | - Neeti Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India.
| | - Prabhanjan Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Anand P Khandwekar
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, 412105, India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
11
|
Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep 2017; 7:41808. [PMID: 28150731 PMCID: PMC5288772 DOI: 10.1038/srep41808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic osteomyelitis is a prolonged persistent disease accompanied by bone destruction and sequestrum formation, it is very difficult to treat. Antibiotic loaded polymethyl methacrylate (PMMA) has been used in clinical. However, when PMMA was implanted in the body, the deficiencies is that it is non-biodegradable and a second operation is needed. Here, we synthesize a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds, and evaluated the therapeutic effect in treating chronic osteomyelitis with bone defects in rabbit model compared with bulk PMMA. X-ray, Micro CT, gross pathology as well as immunohistochemical staining were performed at predesignated time points (1, 3, 6 and 12 weeks). Our results demonstrated that the efficiency of mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffolds loaded with 5 mg levofloxacin was much better at treating bone defects than the other groups. This novel synthetic scaffold may provide a solution for the treatment of chronic osteomyelitis.
Collapse
|