1
|
Pérez-Herrero E, Lanier OL, Krishnan N, D'Andrea A, Peppas NA. Drug delivery methods for cancer immunotherapy. Drug Deliv Transl Res 2024; 14:30-61. [PMID: 37587290 PMCID: PMC10746770 DOI: 10.1007/s13346-023-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Despite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples. Moreover, this article provides an exhaustive review of the studies that have been published to date on the particular case of hematological cancers. (Created with BioRender).
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, Tenerife, Spain.
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Olivia L Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Neha Krishnan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Abby D'Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery & Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery & Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Crisci S, Amitrano F, Saggese M, Muto T, Sarno S, Mele S, Vitale P, Ronga G, Berretta M, Di Francia R. Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology. ACTA ACUST UNITED AC 2019; 55:medicina55080414. [PMID: 31357735 PMCID: PMC6723645 DOI: 10.3390/medicina55080414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Filomena Amitrano
- Gruppo Oncologico Ricercatori Italiano GORI ONLUS, Pordenone 33100, Italy
| | - Mariangela Saggese
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, Naples 80131, Italy
| | - Sabrina Sarno
- Anatomia Patologica, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO National Cancer Institute, Aviano (PN) 33081, Italy
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), Ancona 60125, Italy.
| |
Collapse
|
3
|
Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2018; 190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
This review highlights a new paradigm in macromolecular nanomedicine - drug-free macromolecular therapeutics (DFMT). The effectiveness of the new system is based on biorecognition events without the participation of low molecular weight drugs. Apoptosis of cells can be initiated by the biorecognition of complementary peptide/oligonucleotide motifs at the cell surface resulting in the crosslinking of slowly internalizing receptors. B-cell CD20 receptors and Non-Hodgkin lymphoma (NHL) were chosen as the first target. Exposing cells to a conjugate of one motif with a targeting ligand decorates the cells with this motif. Further exposure of decorated cells to a macromolecule (synthetic polymer or human serum albumin) containing multiple copies of the complementary motif as grafts results in receptor crosslinking and apoptosis induction in vitro and in vivo. The review focuses on recent developments and explores the mechanism of action of DFMT. The altered molecular signaling pathways demonstrated the great potential of DFMT to overcome rituximab resistance resulting from either down-regulation of CD20 or endocytosis and trogocytosis of rituximab/CD20 complexes. The suitability of this approach for the treatment of blood borne cancers is confirmed. In addition, the widespread applicability of DFMT as a new concept in macromolecular therapeutics for numerous diseases is exposed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Tang X, Xie C, Jiang Z, Li A, Cai S, Hou C, Wang J, Liang Y, Ma D. Rituximab (anti-CD20)-modified AZD-2014-encapsulated nanoparticles killing of B lymphoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1063-1073. [PMID: 30198340 DOI: 10.1080/21691401.2018.1478844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mTOR signal pathway is often highly activated in B-cell non-Hodgkin's lymphoma (NHL) and promotes cancer progression and chemo-resistance. Therefore, the pathways of mTOR are an important target for drug development in this disease. In the current study, we developed a rituximab (anti-CD20)-modified mTOR inhibitor, AZD-2014, loaded into nanoparticles (Ab-NPs-AZD-2014) for trial of its anti-NHL effect. In a cultured NHL cell line, Ab-NPs-AZD-2014 inhibited cancer cell growth, induced cell apoptosis, and blocked activation of mTORC1 and mTORC2 in Raji cells. These results indicate that antibody modification and nanomaterial loading of AZD-2014 with anti-CD20 significantly improved efficacy of AZD-2014 against NHL cells. This approach may ultimately deserve testing in therapy against NHL.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Chunmei Xie
- b Department of Laboratory Medicine , Guangzhou 8th People's Hospital, Guangzhou Medical University , Guangzhou , China
| | - Zhenyou Jiang
- c Departments of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Changhao Hou
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Jian Wang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Afliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| |
Collapse
|
5
|
Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine (Lond) 2018; 13:1639-1656. [PMID: 30035660 DOI: 10.2217/nnm-2018-0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting nanoparticles to cancers for improved therapeutic efficacy and decreased side effects remains a popular concept in the past decades. Although the enhanced permeability and retention effect serves as a key rationale for all the currently commercialized nanoformulations, it does not enable uniform delivery of nanoparticles to all tumorous regions in all patients with sufficient quantities. Also, the increase in overall survival is often modest. Many factors may influence the delivering process of nanoparticles, which must be taken into consideration for the promise of nanomedicine in patients to be realized. Herein, we review the mechanisms and influencing factors during the delivery of cancer therapeutics and summarize current strategies that have been developed for the fabrication of smart drug delivery systems.
Collapse
Affiliation(s)
- Huafei Li
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
- International Joint Cancer Institute, Translational Medicine Institute, the Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, PR China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, PR China
| | - Hai Jin
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Wei Wan
- Department of Orthopedic Oncology, Spine Tumor Center, Second Affiliated Hospital of the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, PR China
| | - Cong Wu
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Lixin Wei
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
| |
Collapse
|
6
|
Chen M, Xia Y, Tan Y, Jiang G, Jin H, Chen Y. Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1. Gene 2018; 661:68-77. [PMID: 29605603 DOI: 10.1016/j.gene.2018.03.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase (PPIase) that controls cell fate by regulating multiple signal transduction pathways and is found to be overexpressed in a variety of malignant tumors. Herein, we found the expression of PIN1 is up-regulated while miRNA-370 (miR-370) down-regulated in both esophageal squamous-cell carcinoma (ESCC) tissues and cells. Transfection of miR-370 can significantly decrease PIN1 expression in targeting ESCC cells. Overexpression of miR-370 can induce decreased cell proliferation and cell cycle arrest, as well as increased apoptosis in ESCC cells, while this function can be significantly prevented by co-transfection of PIN1. Further experimental results demonstrated that β-catenin, cyclin D1, and caspase activation might be involved in miR-370/PIN1 induced growth inhibition and apoptosis. Besides, low miR-370 and high PIN1 expression significantly correlated with tumor diameter, poor differentiation, tumor invasion and lymph node metastasis in patients diagnosed with ESCC. In conclusion, downregulation of miR-370 in ESCC is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1, which might be a potential therapeutic target and adverse prognostic factor in the clinic.
Collapse
Affiliation(s)
- Mingzhi Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China; Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Yang Xia
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China
| | - Yongfei Tan
- Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Guojun Jiang
- Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Hai Jin
- Department of Thoracic Surgery, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China.
| |
Collapse
|
7
|
Yin H, Meng T, Shu L, Mao M, Zhou L, Chen H, Song D. Novel reduction-sensitive micellar nanoparticles assembled from Rituximab-doxorubicin conjugates as smart and intuitive drug delivery systems for the treatment of non-Hodgkin's lymphoma. Chem Biol Drug Des 2017; 90:892-899. [PMID: 28440948 DOI: 10.1111/cbdd.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Huabin Yin
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Tong Meng
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Ling Shu
- Department of Hematology; Yancheng City's No. 1 People's Hospital affiliated to Medical School of Nantong University; Yancheng Jiangsu Province China
| | - Min Mao
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| | - Lei Zhou
- Department of Bone Tumor Surgery; Changzheng Hospital Affiliated to the Second Military Medical University; Shanghai China
| | - Haiyan Chen
- Department of Rheumatology; Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine; Shanghai China
| | - Dianwen Song
- Department of Orthopedics; Shanghai General Hospital; School of Medicine; Shanghai Jiaotong University; Shanghai China
| |
Collapse
|
8
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017. [PMID: 28526063 DOI: 10.1186/s13045-017-0435-x,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA. .,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017; 10:112. [PMID: 28526063 PMCID: PMC5438492 DOI: 10.1186/s13045-017-0435-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CHO Cells
- Cell Death/drug effects
- Cricetulus
- Female
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice, Inbred BALB C
- Mice, SCID
- Reactive Oxygen Species/immunology
- Receptors, CXCR4/analysis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Wu C, Wan W, Zhu J, Jin H, Zhao T, Li H. Induction of potent apoptosis by an anti-CD20 aptamer via the crosslink of membrane CD20 on non-Hodgkin's lymphoma cells. RSC Adv 2017. [DOI: 10.1039/c6ra27154e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An anti-CD20 DNA aptamer was successfully generated by cell-SELEX, the crosslink of which can induce potent apoptosis in target cells.
Collapse
Affiliation(s)
- Cong Wu
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Wei Wan
- Department of Orthopedic Oncology
- Spine Tumor Center
- Changzheng Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Ji Zhu
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Hai Jin
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Tiejun Zhao
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
| | - Huafei Li
- Department of Laboratory Diagnosis/Thoracic Surgery
- Changhai Hospital Affiliated to the Second Military Medical University
- Shanghai
- P.R. China
- International Joint Cancer Institute
| |
Collapse
|