1
|
Huang L, Jiang Y, Liu X, Guo Y, Feng Y, Pan P, Li M, Liu Y. Antheraea pernyi silk fibroin-coated adenovirus as a VEGF165-Ang-1 dual gene delivery vector. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221095254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vascularization is a key challenge in the regeneration of tissues containing blood vessels. In this study, spermine was used for cationic modification of Antheraea pernyi silk fibroin (ASF) to synthesize cationized ASF (CASF). CASF/Ad complexes prepared by coating adenovirus (Ad) with CASF were used as delivery vectors for vascular endothelial growth factor 165 and angiopoietin-1 dual genes. The results showed that the zeta potential of the Ad was reversed from −7.75 mV to approximately +8.40 mV after CASF coating, and the sizes of the CASF/Ad complexes were 200 to 290 nm. Furthermore, human umbilical vein endothelial cells HUVECs were cocultured and infected with CASF/Ad in vitro. The results of confocal laser scanning microscopy, flow cytometry and CCK-8 assay showed that coating Ad with CASF at concentration of 20 and 50 µg/mL not only reduced the cytotoxicity of naked Ad, but also significantly promoted cell proliferation. Therefore, the CASF/Ad complexes could be beneficial to reduce the dosage of Ad and the potential toxicity risk of high doses of Ad in vivo, which has the potential of application to promote vascular network regeneration.
Collapse
Affiliation(s)
- Linling Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yi Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Xueping Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ying Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yanfei Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Peng Pan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Wu R, Li H, Yang Y, Zheng Q, Li S, Chen Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2021; 4:6630-6646. [PMID: 35006966 DOI: 10.1021/acsabm.1c00654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Musculoskeletal engineering has been considered as a promising approach to customize regenerated tissue (such as bone, cartilage, tendon, and ligament) via a self-healing performance. Recent advances have demonstrated the great potential of bioactive materials for regenerative medicine. Silk fibroin (SF), a natural polymer, is regarded as a remarkable bioactive material for musculoskeletal engineering thanks to its biocompatibility, biodegradability, and tunability. To improve tissue-engineering performance, silk fibroin is hybridized with other biomaterials to form silk-fibroin-based hybrid biomaterials, which achieve superior mechanical and biological performance. Herein, we summarize the recent development of silk-based hybrid biomaterials in musculoskeletal tissue with reasonable generalization and classification, mainly including silk fibroin-based inorganic and organic hybrid biomaterials. The applied inorganics are composed of calcium phosphate, graphene oxide, titanium dioxide, silica, and bioactive glass, while the polymers include polycaprolactone, collagen (or gelatin), chitosan, cellulose, and alginate. This article mainly focuses on the physical and biological performances both in vitro and in vivo study of several common silk-based hybrid biomaterials in musculoskeletal engineering. The timely summary and highlight of silk-fibroin-based hybrid biomaterials will provide a research perspective to promote the further improvement and development of silk fibroin hybrid biomaterials for improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Shantou University Medical College, Shantou, 515000, PR China
| | - Yuliang Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Yuexiu District, Guangzhou, 510000, PR China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, PR China
| |
Collapse
|
3
|
Qu J, Wang W, Feng Y, Niu L, Li M, Yang J, Xie Y. Cationic Antheraea pernyi Silk Fibroin-Modified Adenovirus-Mediated ING4 and IL-24 Dual Gene Coexpression Vector Suppresses the Growth of Hepatoma Carcinoma Cells. Int J Nanomedicine 2019; 14:9745-9761. [PMID: 31849466 PMCID: PMC6911339 DOI: 10.2147/ijn.s230693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Abstract
Introduction Cancer gene therapy requires both effective tumor suppressor genes and safe vectors that express target genes efficiently. Inhibitor of growth 4 (ING4) inhibits tumor growth via multiple pathways. Interleukin-24 (IL-24) also has tumor-suppressive activity against a broad spectrum of human cancers. Adenovirus (Ad) vectors exhibit high infection efficiency, but potential toxicity related to high doses of adenovirus has led to careful reconsideration of their use in human clinical trials. Antheraea pernyi silk fibroin (ASF) is a cytocompatible and biodegradable natural polymer, and it possesses Arg–Gly–Asp sequences exhibiting a high binding affinity and selectivity for αvβ3 and αvβ5 integrin receptors, which are overexpressed in tumor vessels and most tumor cells. Methods In this study, an Arg-Gly-Asp peptide-modified Ad vector coexpressing ING4 and IL-24 was constructed by homologous recombination of the dual gene coexpression transfer plasmid and RGD-modified pAdEasy-1 adenoviral backbone plasmid. The cationic ASF (CASF) was prepared by modifying ASF with low-molecular-weight PEI. The negatively charged Ad vector was modified with CASF to form a CASF/Ad complex. Results Human hepatoma carcinoma SMMC-7721 cells and normal hepatic L-02 cells were infected with the CASF/Ad complex, which showed significantly higher infection efficiency than the naked Ad. The CASF/Ad complex could effectively mediate the expression of the target gene ING4 in SMMC-7721 cells and the secretion of the target gene IL-24 from SMMC-7721 cells, thus inducing apoptosis of hepatoma carcinoma SMMC-7721 cells. The viability of SMMC-7721 and L-02 cells infected with the CASF/Ad complex was further assessed, and it was found that the growth of SMMC-7721 cells was significantly inhibited but that the growth and proliferation of L-02 cells were not affected. Conclusion The CASF/Ad complex constructed in this study, showing improved infection efficiency and enhanced suppressive effects on human hepatoma carcinoma SMMC-7721 cells, has the potential to reduce the dose of adenovirus and still maintain high infection efficiency and tumor inhibition.
Collapse
Affiliation(s)
- Jing Qu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Weiwei Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Yanfei Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufeng Xie
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|