1
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
2
|
Prakash R, Izraely S, Thareja NS, Lee RH, Rappaport M, Kawaguchi R, Sagi-Assif O, Ben-Menachem S, Meshel T, Machnicki M, Ohe S, Hoon DS, Coppola G, Witz IP, Carmichael ST. Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis. Front Neurosci 2019; 13:297. [PMID: 31024232 PMCID: PMC6465799 DOI: 10.3389/fnins.2019.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Neural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs. Do cancer and CNS tissue repair share similar cellular processes? In this study, we identify a novel role of the regenerative neurovascular niche induced by stroke in promoting brain melanoma metastasis through enhancing cellular interactions with surrounding niche components. Repair-mediated neurovascular signaling induces metastatic cells to express genes crucial to metastasis. Mimicking stroke-like conditions in vitro displays an enhancement of metastatic migration potential and allows for the determination of cell-specific signals produced by the regenerative neurovascular niche. Comparative analysis of both in vitro and in vivo expression profiles reveals a major contribution of endothelial cells in mediating melanoma metastasis. These results point to a previously undiscovered role of the regenerative neurovascular niche in shaping the tumor microenvironment and brain metastatic landscape.
Collapse
Affiliation(s)
- Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sivan Izraely
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nikita S Thareja
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rex H Lee
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maya Rappaport
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Dave S Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isaac P Witz
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Yu F, Xiong YM, Yu SC, He LL, Niu SS, Wu YM, Liu J, Qu LB, Liu LE, Wu YJ. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample. Int J Nanomedicine 2018; 13:429-437. [PMID: 29403274 PMCID: PMC5777376 DOI: 10.2147/ijn.s152618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1), a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase) detection have focused on the prokaryote MTase and its activity. Methods A magnetic fluorescence-linked immunosorbent assay (FLISA) using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized. Results Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1-1,500 ng/mL, the recovery was 91.67%-106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%-11.29% and 7.03%-11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA) kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001). The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter than ELISA kits. Conclusion These indicated that the proposed FLISA method was sensitive and high throughput and can quickly screen the level of DNMT1 in serum samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | | |
Collapse
|
4
|
Zhao H, Wu G, Zhu J, Sun M, Wang Y, Fan Y, Wu K, Bi H, Dai H, Lv C, Xue C. Melanocyte-specific gene 1 promotes melanoma progression by enhancing the expression of Bcl-2. Oncol Lett 2017; 15:2413-2418. [PMID: 29434952 DOI: 10.3892/ol.2017.7592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma is a class of highly malignant tumors derived from melanocytes. At present, the dysregulated gene expression involved in the progression of melanoma has attracted much attention. In the present study, the gene expression profile of human melanoma tissue was screened using a cDNA microarray, and it was identified that melanocyte-specific gene 1 (MSG1) was significantly overexpressed in melanoma tissue compared with paired nevus tissues. The overexpression of MSG1 in melanoma was subsequently confirmed using immunohistochemistry in a set of melanoma tissues. It was additionally identified that the overexpression of MSG1 may promote cell viability and inhibit cell apoptosis in human melanoma A375 cells, thus promoting melanoma progression. Mechanistically, following screening of the expression of apoptosis-associated proteins, MSG1 was demonstrated to enhance the expression of the apoptosis inhibitor B-cell lymphoma 2 (Bcl-2) to inhibit melanoma cell apoptosis. Therefore, it was concluded that the overexpression of MSG1 inhibits apoptosis by enhancing Bcl-2 expression in malignant melanoma, thus promoting melanoma progression.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China.,Department of Plastic Surgery, The Second Sanatorium of Jinan Military Region, Qingdao, Shandong 266000, P.R. China
| | - Guosheng Wu
- Department of Burn Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Ji Zhu
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Mengyan Sun
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Yongjie Fan
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Kai Wu
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hongda Bi
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Haiying Dai
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Hui H, Zhang X, Li H, Liu X, Shen L, Zhu Y, Xu J, Guo Q, Lu N. Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells. J Cancer Res Clin Oncol 2016; 142:1449-59. [PMID: 27085528 DOI: 10.1007/s00432-016-2160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/05/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo. MATERIALS AND METHODS The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice. RESULTS OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen. CONCLUSIONS All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/metabolism
- Flavonoids/pharmacology
- Histone Deacetylase 1/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Proto-Oncogene Proteins/metabolism
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxiao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Le Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|