1
|
High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery. Int J Mol Sci 2023; 24:ijms24032753. [PMID: 36769075 PMCID: PMC9916966 DOI: 10.3390/ijms24032753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The main cause of subretinal neovascularisation in wet age-related macular degeneration (AMD) is an abnormal expression in the retinal pigment epithelium (RPE) of the vascular endothelial growth factor (VEGF). Current approaches for the treatment of AMD present considerable issues that could be overcome by encapsulating anti-VEGF drugs in suitable nanocarriers, thus providing better penetration, higher retention times, and sustained release. In this work, the ability of large pore mesoporous silica nanoparticles (LP-MSNs) to transport and protect nucleic acid molecules is exploited to develop an innovative LP-MSN-based nanosystem for the topical administration of anti-VEGF siRNA molecules to RPE cells. siRNA is loaded into LP-MSN mesopores, while the external surface of the nanodevices is functionalised with polyethylenimine (PEI) chains that allow the controlled release of siRNA and promote endosomal escape to facilitate cytosolic delivery of the cargo. The successful results obtained for VEGF silencing in ARPE-19 RPE cells demonstrate that the designed nanodevice is suitable as an siRNA transporter.
Collapse
|
2
|
Mayorova OA, Gusliakova OI, Prikhozhdenko ES, Verkhovskii RA, Bratashov DN. Magnetic Platelets as a Platform for Drug Delivery and Cell Trapping. Pharmaceutics 2023; 15:pharmaceutics15010214. [PMID: 36678843 PMCID: PMC9866132 DOI: 10.3390/pharmaceutics15010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers. The high efficiency of platelet loading makes them promising research objects for the development of personalized drug-delivery systems. We are developing a new approach to use platelets decorated with magnetic nanoparticles as a targeted drug-delivery system, with a focus on bloodstream delivery. Platelets are non-nuclear blood cells and are of great importance in the pathogenesis of blood-clotting disorders. In addition, platelets are able to attach to circulating tumor cells. In this article, we studied the effect of platelets labeled with BSA-modified magnetic nanoparticles on healthy and cancer cells. This opens up broad prospects for future research based on the delivery of specific active substances by this method.
Collapse
Affiliation(s)
- Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Department of General Educations, Saratov State Vavilov Agrarian University, 1 Theater Square, 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| | - Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | | | - Roman A. Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| |
Collapse
|
3
|
Back V, Asgari A, Franczak A, Saito M, Castaneda Zaragoza D, Sandow SL, Plane F, Jurasz P. Inhibition of platelet aggregation by activation of platelet intermediate conductance Ca 2+ -activated potassium channels. J Thromb Haemost 2022; 20:2587-2600. [PMID: 35867883 DOI: 10.1111/jth.15827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Within the vasculature platelets and endothelial cells play crucial roles in hemostasis and thrombosis. Platelets, like endothelial cells, possess intermediate conductance Ca2+ -activated K+ (IKCa ) channels and generate nitric oxide (NO). Although NO limits platelet aggregation, the role of IKCa channels in platelet function and NO generation has not yet been explored. OBJECTIVES We investigated whether IKCa channel activation inhibits platelet aggregation, and per endothelial cells, enhances platelet NO production. METHODS Platelets were isolated from human volunteers. Aggregometry, confocal microscopy, and a novel flow chamber model, the Quartz Crystal Microbalance (QCM) were used to assess platelet function. Flow cytometry was used to measure platelet NO production, calcium signaling, membrane potential, integrin αIIb /β3 activation, granule release, and procoagulant platelet formation. RESULTS Platelet IKCa channel activation with SKA-31 inhibited aggregation in a concentration-dependent manner, an effect reversed by the selective IKCa channel blocker TRAM-34. The QCM model along with confocal microscopy demonstrated that SKA-31 inhibited platelet aggregation under flow conditions. Surprisingly, IKCa activation by SKA-31 inhibited platelet NO generation, but this could be explained by a concomitant reduction in platelet calcium signaling. IKCa activation by SKA-31 also inhibited dense and alpha-granule secretion and integrin αIIb /β3 activation, but maintained platelet phosphatidylserine surface exposure as a measure of procoagulant response. CONCLUSIONS Platelet IKCa channel activation inhibits aggregation by reducing calcium-signaling and granule secretion, but not by enhancing platelet NO generation. IKCa channels may be novel targets for the development of antiplatelet drugs that limit atherothrombosis, but not coagulation.
Collapse
Affiliation(s)
- Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Max Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Diego Castaneda Zaragoza
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaun L Sandow
- Biomedical Sciences, University of the Sunshine Coast, Sydney, Queensland, Australia
- Department of Physiology, University of New South Wales, Sydney, Queensland, Australia
| | - Frances Plane
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Taterra D, Skinningsrud B, Pękala PA, Tomaszewska IM, Marycz K, Radomski MW, Tomaszewski KA. In vitro effects of cobalt and chromium nanoparticles on human platelet function. Nanotoxicology 2020; 15:52-65. [PMID: 33147415 DOI: 10.1080/17435390.2020.1841845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) are released from orthopedic and neurosurgical prostheses and can interact with a number of blood components once in the bloodstream. Potential toxic effects of Co and Cr NPs on blood platelets have not been thoroughly investigated. The aim of this study was to analyze the effect of Co and Cr NPs on platelet function in vitro. The ability of the tested NPs to induce platelet activation and aggregation was measured using light transmission aggregometry, flow cytometry, and quartz crystal balance with dissipation (QCM-D). This was confirmed by transmission electron microscopy (TEM), scanning electron microscopy, and optical and immunofluorescence microscopy. Perfusion of QCM-D sensor crystals with platelet-rich-plasma in the presence of Co 28 nm, CoO 50 nm, Co2O3 50 nm, Co3O4 30-50nm, Cr 35-45nm, Cr2O3 60 nm NPs (0.5-5.0 µg/mL) resulted in significant changes in frequency and dissipation, indicating that these NPs caused platelet microaggregation. Transmission electron microscopy also revealed that Cr NPs led to platelet swelling and lysis. Our study shows that both Co and Cr NPs affect platelet function in vitro with two distinct mechanisms. While Co NPs result in standard platelet aggregation, Cr NPs cause both platelet aggregation and decreased platelet membrane integrity and lysis. Based on these findings, monitoring serum NP levels and platelet-mediated hemostasis can be advised in patients with metal-on-metal Co-Cr prostheses.
Collapse
Affiliation(s)
- Dominik Taterra
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.,International Evidence-Based Anatomy Working Group, Krakow, Poland
| | - Bendik Skinningsrud
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.,International Evidence-Based Anatomy Working Group, Krakow, Poland
| | - Przemysław A Pękala
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.,International Evidence-Based Anatomy Working Group, Krakow, Poland
| | - Iwona M Tomaszewska
- Department of Medical Education, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Malin, Poland.,Faculty of Biology and Animal Science, Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland.,Faculty of Veterinary Medicine, Clinic for Horses - Department for Surgery, Justus-Liebig-University, Gießen, Germany
| | - Marek W Radomski
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Krzysztof A Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.,Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.,Scanmed St. Raphael Hospital, Krakow, Poland
| |
Collapse
|
5
|
Hante NK, Medina C, Santos-Martinez MJ. Effect on Platelet Function of Metal-Based Nanoparticles Developed for Medical Applications. Front Cardiovasc Med 2019; 6:139. [PMID: 31620449 PMCID: PMC6759469 DOI: 10.3389/fcvm.2019.00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have been recently introduced as potential diagnostic and therapeutic tools in the medical field. One of the main concerns in relation to the use of nanomaterials in humans is their potential toxicity profile and blood compatibility. In fact, and due to their small size, NPs can translocate into the systemic circulation even after dermal contact, inhalation, or oral ingestion. Once in the blood stream, nanoparticles become in contact with the different components of the blood and can potentially interfere with normal platelet function leading to bleeding or thrombosis. Metallic NPs have been already used for diagnosis and treatment purposes due to their unique characteristics. However, the potential interactions between metallic NPs and platelets has not been widely studied and reported. This review focuses on the factors that can affect platelet activation and aggregation by metal NPs and the nature of such interactions, providing a summary of the effect of various metal NPs on platelet function available in the literature.
Collapse
Affiliation(s)
- Nadhim Kamil Hante
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Carlos Medina
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maria Jose Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Hajtuch J, Hante N, Tomczyk E, Wojcik M, Radomski MW, Santos-Martinez MJ, Inkielewicz-Stepniak I. Effects of functionalized silver nanoparticles on aggregation of human blood platelets. Int J Nanomedicine 2019; 14:7399-7417. [PMID: 31571858 PMCID: PMC6750026 DOI: 10.2147/ijn.s213499] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We studied the effects of silver nanoparticles (AgNPs) on human blood platelet function. We hypothesized that AgNPs, a known antimicrobial agent, can be used as blood-compatible, "ideal material'' in medical devices or as a drug delivery system. Therefore, the aim of the current study was to investigate if functionalized AgNPs affect platelet function and platelets as well as endothelial cell viability in vitro. METHODS AgNPs, functionalized with reduced glutathione (GSH), polyethylene glycol (PEG) and lipoic acid (LA) were synthesized. Quartz crystal microbalance with dissipation was used to measure the effect of AgNPs on platelet aggregation. Platelet aggregation was measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast microscopy. Flow cytometry was used to detect surface abundance of platelet receptors. Lactate dehydrogenase test was used to assess the potential cytotoxicity of AgNPs on human blood platelets, endothelial cells, and fibroblasts. Commercially available ELISA tests were used to measure the levels of thromboxane B2 and metalloproteinases (MMP-1, MMP-2) released by platelets as markers of platelet activation. RESULTS 2 nm AgNPs-GSH, 3.7 nm AgNPs-PEG both at 50 and 100 µg/mL, and 2.5 nm AgNPs-LA at 100 µg/mL reduced platelet aggregation, inhibited collagen-mediated increase in total P-selectin and GPIIb/IIIa, TXB2 formation, MMP-1, and MMP-2 release. The tested AgNPs concentrations were not cytotoxic as they did not affect, platelet, endothelial cell, or fibroblast viability. CONCLUSION All tested functionalized AgNPs inhibited platelet aggregation at nontoxic concentrations. Therefore, functionalized AgNPs can be used as an antiplatelet agent or in design and manufacturing of blood-facing medical devices, such as vascular grafts, stents, heart valves, and catheters.
Collapse
Affiliation(s)
- Justyna Hajtuch
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin2, Ireland
| | | | - Michal Wojcik
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Witold Radomski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
7
|
Nguyen TH, Schuster N, Greinacher A, Aurich K. Uptake Pathways of Protein-Coated Magnetic Nanoparticles in Platelets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28314-28321. [PMID: 30067021 DOI: 10.1021/acsami.8b07588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic nanoparticles have recently shown great potential in nonradioactive labeling of platelets. Platelet labeling efficiency is enhanced when particles are conjugated with proteins like human serum albumin (HSA). However, the optimal HSA density coated on particles and the uptake mechanism of single particles in platelets remain unclear. Here, we utilized single-molecule force spectroscopy (SMFS) and other complementary methods to characterize the interaction of particles when interacting with platelets and to determine the optimal HSA amount required to coat particles. An HSA concentration of 0.5-1.0 mg/mL for coating particles is most efficient for platelet labeling. Binding pathways could be elucidated by linking a single HSA particle to SMFS tips via polyethylene glycol (PEG) linkers of different lengths and allowing them to interact with immobilized platelets on the substrate. Depending on the PEG length (i.e., short ∼2 nm, medium ∼30 nm, and long ∼100 nm), particles interact differently with platelets as shown by one, two, or three force distributions, which correspond up to three different binding pathways, respectively. We propose a model that the short PEG linker allows the particle to interact only with the platelet membrane, whereas the medium and long PEG linkers promote the particle to transfer from open canalicular system to another target inside platelets. Our study optimizes magnetic platelet labeling and provides details of particle pathways in platelets.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
- ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Nicola Schuster
- ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| | - Konstanze Aurich
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| |
Collapse
|
8
|
Inkielewicz-Stepniak I, Tajber L, Behan G, Zhang H, Radomski MW, Medina C, Santos-Martinez MJ. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles. MATERIALS 2018; 11:ma11050724. [PMID: 29751544 PMCID: PMC5978101 DOI: 10.3390/ma11050724] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
The development of novel oral drug delivery systems is an expanding area of research and both new approaches for improving their efficacy and the investigation of their potential toxicological effect are crucial and should be performed in parallel. Polystyrene nanoparticles (NPs) have been used for the production of diagnostic and therapeutic nanosystems, are widely used in food packaging, and have also served as models for investigating NPs interactions with biological systems. The mucous gel layer that covers the epithelium of the gastrointestinal system is a complex barrier-exchange system that it is mainly constituted by mucin and it constitutes the first physical barrier encountered after ingestion. In this study, we aimed to investigate the effect of polystyrene NPs on mucin and its potential role during NP–cell interactions. For this purpose, we evaluated the interaction of polystyrene NPs with mucin in dispersion by dynamic light scattering and with a deposited layer of mucin using a quartz crystal microbalance with dissipation technology. Next, we measured cell viability and the apoptotic state of three enterocyte-like cell lines that differ in their ability to produce mucin, after their exposure to the NPs. Positive charged NPs showed the ability to strongly interact and aggregate mucin in our model. Positive NPs affected cell viability and induced apoptosis in all cell lines independently of their ability of produce mucin.
Collapse
Affiliation(s)
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Gavin Behan
- Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland.
| | - Hongzhou Zhang
- Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland.
| | - Marek W Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Carlos Medina
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| | - Maria J Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
- School of Medicine, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
9
|
Larkin CM, Breen EP, Tomaszewski KA, Eisele S, Radomski MW, Ryan TA, Santos-Martinez MJ. Platelet microaggregation in sepsis examined by quartz crystal microbalance with dissipation technology. Platelets 2017; 29:301-304. [DOI: 10.1080/09537104.2017.1371686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline M. Larkin
- Department of Anaesthesia and Intensive Care Medicine, St. James’s Hospital, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Eamon P. Breen
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Krzysztof A. Tomaszewski
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Simon Eisele
- Department of Pharmacy, Ludwig Maximilian University, Munich, Germany
| | - Marek W. Radomski
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- School of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas A. Ryan
- Department of Anaesthesia and Intensive Care Medicine, St. James’s Hospital, Dublin, Ireland
| | - Maria-Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
10
|
Aurich K, Wesche J, Palankar R, Schlüter R, Bakchoul T, Greinacher A. Magnetic Nanoparticle Labeling of Human Platelets from Platelet Concentrates for Recovery and Survival Studies. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34666-34673. [PMID: 28945336 DOI: 10.1021/acsami.7b10113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Platelets are the smallest blood cells and important for hemostasis. Platelet concentrates (PC) are medicinal products transfused to prevent or treat bleeding. Typically, platelets in PCs are assessed by in vitro tests for their function. However, in vivo testing of these platelets is highly desirable. To distinguish transfused platelets from patients or probands own cells after PC transfusions within the scope of clinical studies, platelets need to be efficiently labeled with minimal preactivation prior to transfusion. Here we report on a method for improved cell uptake of ferucarbotran magnetic nanoparticles contained in Resovist, an FDA-approved MRI contrast agent, by modifying the nanoparticle shell with human serum albumin (HSA). Both HSA-ferucarbotran nanoparticles and magnetically labeled platelets were produced according to EU-GMP guidelines. Platelet function after labeling was evaluated by light transmission aggregometry and by determination of expression of CD62P as platelet activation marker. Magnetic labeling does not impair platelet function and platelets showed reasonable activation response to agonists. Platelet survival studies in NOD/SCID-mice resulted in comparable survival behavior of magnetically labeled and nonlabeled platelets. Additionally, labeled platelets can be recovered from whole blood by magnetic separation.
Collapse
Affiliation(s)
- Konstanze Aurich
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Jan Wesche
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Raghavendra Palankar
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Rabea Schlüter
- Imaging-Zentrum der Fachrichtung Biologie, Ernst-Moritz-Arndt-Universität Greifswald , Friedrich-Ludwig-Jahn-Straße 15, 17487 Greifswald, Germany
| | - Tamam Bakchoul
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald , Sauerbruchstraße, 17475 Greifswald, Germany
| |
Collapse
|
11
|
Chan WT, Liu CC, Chiang Chiau JS, Tsai ST, Liang CK, Cheng ML, Lee HC, Yeung CY, Hou SY. In vivo toxicologic study of larger silica nanoparticles in mice. Int J Nanomedicine 2017; 12:3421-3432. [PMID: 28496319 PMCID: PMC5417664 DOI: 10.2147/ijn.s126823] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silica nanoparticles (SiNPs) are being studied and used for medical purposes. As nanotechnology grows rapidly, its biosafety and toxicity have frequently raised concerns. However, diverse results have been reported about the safety of SiNPs; several studies reported that smaller particles might exhibit toxic effects to some cell lines, and larger particles of 100 nm were reported to be genotoxic to the cocultured cells. Here, we investigated the in vivo toxicity of SiNPs of 150 nm in various dosages via intravenous administration in mice. The mice were observed for 14 days before blood examination and histopathological assay. All the mice survived and behaved normally after the administration of nanoparticles. No significant weight change was noted. Blood examinations showed no definite systemic dysfunction of organ systems. Histopathological studies of vital organs confirmed no SiNP-related adverse effects. We concluded that 150 nm SiNPs were biocompatible and safe for in vivo use in mice.
Collapse
Affiliation(s)
- Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital.,Graduate Institute of Engineering Technology, National Taipei University of Technology.,Mackay Medicine, Nursing, and Management College
| | - Cheng-Che Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei
| | | | - Shang-Ting Tsai
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| | - Chih-Kai Liang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Hsinchu
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Memorial Hospital, Hsinchu.,Department of Pediatrics, Taipei Medical University, Taipei
| | - Chun-Yun Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital.,Mackay Medicine, Nursing, and Management College.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Shao-Yi Hou
- Graduate Institute of Engineering Technology, National Taipei University of Technology.,Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei
| |
Collapse
|