1
|
Wang X, Chen C, Yan J, Xu Y, Pan D, Wang L, Yang M. Druggability of Targets for Diagnostic Radiopharmaceuticals. ACS Pharmacol Transl Sci 2023; 6:1107-1119. [PMID: 37588760 PMCID: PMC10425999 DOI: 10.1021/acsptsci.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/18/2023]
Abstract
Targets play an indispensable and pivotal role in the development of radiopharmaceuticals. However, the initial stages of drug discovery projects are often plagued by frequent failures due to inadequate information on druggability and suboptimal target selection. In this context, we aim to present a comprehensive review of the factors that influence target druggability for diagnostic radiopharmaceuticals. Specifically, we explore the crucial determinants of target specificity, abundance, localization, and positivity rate and their respective implications. Through a detailed analysis of existing protein targets, we elucidate the significance of each factor. By carefully considering and balancing these factors during the selection of targets, more efficacious and targeted radiopharmaceuticals are expected to be designed for the diagnosis of a wide range of diseases in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Chongyang Chen
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Junjie Yan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Yuping Xu
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Donghui Pan
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Lizhen Wang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
| | - Min Yang
- NHC
Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular
Nuclear Medicine, Jiangsu Institute of Nuclear
Medicine, Wuxi 214063, PR China
- School
of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
2
|
Specified iron oxide nanoparticles by PSMA-11 as a promising nanomolecular imaging probe for early detection of prostate cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Fouquet JP, Sikpa D, Lebel R, Sibgatulin R, Krämer M, Herrmann KH, Deistung A, Tremblay L, Reichenbach JR, Lepage M. Characterization of microparticles of iron oxide for magnetic resonance imaging. Magn Reson Imaging 2022; 92:67-81. [DOI: 10.1016/j.mri.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
4
|
Sillerud LO, Neuwelt AJ, Staquicini FI, Arap W, Pasqualini R. Repurposing Ferumoxytol as a Breast Cancer-Associated Macrophage Tracer with Five-Dimensional Quantitative [Fe]MRI of SPION Dynamics. Cancers (Basel) 2021; 13:cancers13153802. [PMID: 34359704 PMCID: PMC8345165 DOI: 10.3390/cancers13153802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary With the incorporation of immune-modulating therapies into the standard management of triple-negative breast cancer, there is increased interest in the non-invasive imaging of the tumor immune microenvironment. Ferumoxytol is FDA-approved as an iron replacement therapy for iron-deficiency anemia and is also a superparamagnetic iron oxide nanoparticle (SPION) resulting in negative enhancement on T2-weighted MR imaging. It has previously been established that ferumoxytol is taken up by macrophages. In the current study, we used ferumoxytol-contrasted MRI to quantitatively image the iron concentration, and, by extension, the tumor-associated macrophage infiltration within the tumor microenvironment of a highly inflammatory model of triple-negative breast cancer. Abstract Tumor-associated macrophages (TAMs) in breast cancer regulate inflammation, immunosuppression, angiogenesis, and metastasis. However, TAM imaging remains a clinical challenge. Ferumoxytol has long been an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used as an intravenous (IV) treatment for iron-deficiency anemia. Given its high transverse relaxivity, ferumoxytol produces a negative image contrast upon cellular uptake in T2-weighted magnetic resonance imaging (MRI) studies. Here we evaluated ferumoxytol as a contrast agent to image/quantify TAMs in an aggressive mouse model of breast cancer: We developed [Fe]MRI to measure the 5-dimensional function c(x,y,z,t), where c is the concentration of nanoparticle iron and {x,y,z,t} is the 4-dimensional set of tumor space-time coordinates. Ferumoxytol SPIONs are readily phagocytosed (~104/cell) by the F4/80+CD11b+ TAMs within breast tumors. Quantitative [Fe]MRIs served to determine both the spatial and the temporal distribution of the SPION iron, and hence to measure [Fe] = c(x,y,z,t), a surrogate for TAM density. In single-dose pharmacokinetic studies, after an IV dose of 5 mg/Kg iron, [Fe]MRI measurements showed that c(x,y,z,t) within breast tumors peaked around [Fe] = 70 μM at 42 h post-administration, and decayed below the [Fe]MRI detection limit (~2 μM) by day 7. There was no SPION uptake in control organs (muscle and adipose tissue). Optical microscopy of tissue sections confirmed that F4/80+CD11b+ TAMs infiltrated the tumors and accumulated SPION iron. Our methodology and findings have translational applications for breast cancer patients.
Collapse
Affiliation(s)
- Laurel O. Sillerud
- Department of Neurology, UNM BRaIN Center, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Correspondence: (L.O.S.); (R.P.)
| | - Alexander J. Neuwelt
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
- Department of Medical Oncology, Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Fernanda I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA; (F.I.S.); (W.A.)
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: (L.O.S.); (R.P.)
| |
Collapse
|
5
|
Sillerud LO, Yang Y, Yang LY, Duval KB, Thompson J, Yang Y. Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab 2020; 40:S117-S133. [PMID: 32960690 PMCID: PMC7687035 DOI: 10.1177/0271678x20953913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microglial/macrophage activation plays a dual role in response to brain injury after a stroke, promoting early neuroinflammation and benefit for neurovascular recovery. Therefore, the dynamics of stroke-induced cerebral microglial/macrophage activation are of substantial interest. This study used novel anti-Iba-1-targeted superparamagnetic iron-platinum (FePt) nanoparticles in conjunction with magnetic resonance imaging (MRI) to measure the spatiotemporal changes of the microglial/macrophage activation in living rat brain for four weeks post-stroke. Ischemic lesion areas were identified and measured using T2-weighted MR images. After injection of the FePt-nanoparticles, T2*-weighted MR images showed that the nanoparticles were seen solely in brain regions that coincided with areas of active microglia/macrophages detected by post-mortem immunohistochemistry. Good agreement in morphological and distributive dynamic changes was also observed between the Fe+-cells and the Iba-1+-microglia/macrophages. The spatiotemporal changes of nanoparticle detected by T2*-weighted images paralleled the changes of microglial/macrophage activation and phenotypes measured by post-mortem immunohistochemistry over the four weeks post-stroke. Maximum microglial/macrophage activation occurred seven days post-stroke for both measures, and the diminished activation found after two weeks continued to four weeks. Our results suggest that nanoparticle-enhanced MRI may constitute a novel approach for monitoring the dynamic development of neuroinflammation in living animals during the progression and treatment of stroke.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- BRaIN Imaging Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yirong Yang
- BRaIN Imaging Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lisa Y Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kelsey B Duval
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jeffrey Thompson
- Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Yi Yang, Department of Neurology, University of New Mexico, MSC11 6035, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
6
|
Keshtkar M, Shahbazi-Gahrouei D, Mahmoudabadi A. Synthesis and Application of Fe 3O 4@Au Composite Nanoparticles as Magnetic Resonance/Computed Tomography Dual-Modality Contrast Agent. JOURNAL OF MEDICAL SIGNALS & SENSORS 2020; 10:201-207. [PMID: 33062612 PMCID: PMC7528984 DOI: 10.4103/jmss.jmss_55_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022]
Abstract
Background: None of the molecular imaging modalities can produce imaging with both anatomical and functional information. In recent years, to overcome these limitations multimodality molecular imaging or combination of two imaging modalities can provide anatomical and pathological information. Methods: Magnetic iron oxide nanoparticles were prepared by co-precipitation method and then were coated with silica according to Stober method. Consequently, silica-coated nanoparticles were amino-functionalized. Finally, gold nanoparticles assembled onto the surfaces of the previous product. Cytotoxicity effects of prepared Fe3O4@Au nanoparticles were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human hepatocellular carcinoma cells. Their ability as a dual-mode contrast agent was investigated by magnetic resonance (MR) and computed tomography (CT) imaging. Results: Fe3O4@Au nanoparticles were spherical undersize of 75 nm. X-ray diffraction analysis confirmed the formation of Fe3O4@Au nanoparticles. The magnetometry result confirmed the superparamagnetism property of prepared nanoparticles, and the saturation magnetization (Ms) was found to be 33 emu/g. Fe3O4@Au nanoparticles showed good cytocompatibility up to 60 μg/mL. The results showed that the Fe3O4@Au nanoparticles have good r2 relaxivity (135.26 mM−1s−1) and good X-ray attenuation property. Conclusion: These findings represent that prepared Fe3O4@Au nanoparticles in an easy and relatively low-cost manner have promising potential as a novel contrast agent for dual-modality of MR/CT imaging.
Collapse
Affiliation(s)
- Mohammad Keshtkar
- Department of Medical Physics and Radiology, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Alireza Mahmoudabadi
- Department of Medical Physics and Radiology, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Langsjoen J, Neuwelt A, Eberhardt S, Mlady G, Shukla U, Murali S, Pizanis C, Sillerud LO. A comparison of ferumoxytol with gadolinium as contrast agents for the diagnostic magnetic resonance imaging of osteomyelitis. Magn Reson Imaging 2020; 71:45-54. [PMID: 32439428 DOI: 10.1016/j.mri.2020.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ferumoxytol, an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used for the treatment of iron deficiency anemia, is also known to be taken up by macrophages in areas of infection or inflammation, where it produces negative contrast changes on T2-weighted MR images. PURPOSE We sought to compare Ferumoxytol-induced MRI contrast changes with those observed using standard-of-care Gadolinium in patients presenting with symptoms suggestive of osteomyelitis. SUBJECTS Out of eighteen enrolled patients, 15 had MR imaging with both ferumoxytol and gadolinium. Based on clinical and/or pathologic criteria, 7 patients were diagnosed with osteomyelitis, 5 patients had osteomyelitis ruled out, and in 3 patients a definitive diagnosis could not be made. FIELD STRENGTH 1.5 Tesla. SEQUENCES Used included STIR, T1-weighted and T2-weighted spin echo. ASSESSMENT The mean contrast changes upon ferumoxytol and gadolinium administration were measured from lesion regions of interest and compared with control regions. STATISTICAL TESTS Student's t-test, propagation of errors. Data are reported as means ± S.E. RESULTS The mean contrast changes, ΔC, associated with a diagnosis of osteomyelitis were found to be ΔCFe = -2.7 ± 0.7 when Ferumoxytol and T2w imaging sequences were used and ΔCGd = +3.1 ± 1.1 (P < 0.001) when Gadolinium and a T1w imaging sequence was used. The MRI contrast changes for both agents correlated with systemic markers of inflammation, such as the erythrocyte sedimentation rate. In patients without osteomyelitis, no significant contrast changes were observed in T2-weighted, Ferumoxytol-contrasted MRI. The macrophages in osteomyelitic lesions were found to take up at least 16 times as much iron as benign bone marrow. DATA CONCLUSION We conclude that in terms of its MRI diagnostic accuracy for osteomyelitis Ferumoxytol-contrasted MRI is a promising approach for diagnosing osteomyelitis that merits further study.
Collapse
Affiliation(s)
- Jens Langsjoen
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Alex Neuwelt
- Department of Medical Oncology, Department of Veterans Affairs, Richmond, VA 23249, United States of America
| | - Stephen Eberhardt
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Gary Mlady
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Utkarsh Shukla
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Sowmiya Murali
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Charles Pizanis
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
8
|
Vidaurre-Agut C, Rivero-Buceta E, Romaní-Cubells E, Clemments AM, Vera-Donoso CD, Landry CC, Botella P. Protein Corona over Mesoporous Silica Nanoparticles: Influence of the Pore Diameter on Competitive Adsorption and Application to Prostate Cancer Diagnostics. ACS OMEGA 2019; 4:8852-8861. [PMID: 31459973 DOI: 10.1021/acsomega.8b02909] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 05/23/2023]
Abstract
Diagnostic tests based on proteomics analysis can have significant advantages over more traditional biochemical tests. However, low molecular weight (MW) protein biomarkers are difficult to identify by standard mass spectrometric analysis, as they are usually present at low concentrations and are masked by more abundant resident proteins. We have previously shown that mesoporous silica nanoparticles are able to capture a predominantly low MW protein fraction from the serum, as compared to the protein corona (PC) adsorbed onto dense silica nanoparticles. In this study, we begin by further investigating this effect using liquid chromatography-mass spectrometry (LC-MS)/MS and thermogravimetric analysis (TGA) to compare the MW of the proteins in the coronas of mesoporous silica nanoparticles with the same particle size but different pore diameters. Next, we examine the process by which two proteins, one small and one large, adsorb onto these mesoporous silica nanoparticles to establish a theory of why the corona becomes enriched in low MW proteins. Finally, we use this information to develop a novel system for the diagnosis of prostate cancer. An elastic net statistical model was applied to LC-MS/MS protein coronas from the serum of 22 cancer patients, identifying proteins specific to each patient group. These studies help to explain why low MW proteins predominate in the coronas of mesoporous silica nanoparticles, and they illustrate the ability of this information to supplement more traditional diagnostic tests.
Collapse
Affiliation(s)
- Carla Vidaurre-Agut
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Instituto de Instrumentación para Imagen Molecular, Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Eva Romaní-Cubells
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Alden M Clemments
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - César David Vera-Donoso
- Department of Urology, Hospital Universitari i Politècnic La Fe, Av. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Christopher C Landry
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
Muteganya R, Goldman S, Aoun F, Roumeguère T, Albisinni S. Current Imaging Techniques for Lymph Node Staging in Prostate Cancer: A Review. Front Surg 2018; 5:74. [PMID: 30581819 PMCID: PMC6293868 DOI: 10.3389/fsurg.2018.00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction: Lymph node metastases (LNM) represent a proven prognostic factor for biochemical recurrence (BCR)-free survival, metastatic free survival and overall survival in prostate cancer (PCa). Although pelvic node dissection remains the gold standard for the detection of LNM, novel imaging techniques are entering clinical practice, in the effort to improve LNM detection and spare unnecessary surgeries. Aim of the current review is to describe such imaging techniques and explore their advantages and limitations. Evidence Acquisition: The National Library of Medicine Database was searched for relevant articles published between January 2013 and August 2018. A wide search was performed including the combination of following words: “Prostate” and “Cancer” and “staging” and “Lymph Node” and “imaging” and (“MRI” or “PET”). The initial list of selected papers was enriched by individual suggestions of the authors of the present review. Evidence Synthesis: DWI-MRI in detection of lymph node invasion has a sensitivity and specificity of 41 and 94%, respectively. For SPIO MRI using ferumoxtran-10, the sensitivity for detection of LNM with short axis diameter of 5–10 mm is reported at 96.4%, compared to 28.5% with MRI alone. PSMA PET/CT is growing exponentially, both in the initial detection of LNM and for BCR evaluation. Fluciclovine PET could improve detection of subcentimetric pathologic lymph nodes. Sentinel lymph node techniques remain experimental and not validated in the field of PCa. Conclusions: Molecular imaging, particularly PSMA ligand PET imaging, present interesting diagnostic accuracy in LN diagnosis even in subcentimetric LN. DWI-MRI yields good results in LN involvement evaluation and the use of contrast agent such SPIO may improve the detection rate. The SLN technique is limited to experimental protocols and for intermediate or high-risk PCa. Prospective trials are awaited to evaluate the true clinical impact of these imaging techniques on PCa oncologic outcomes.
Collapse
Affiliation(s)
- Raoul Muteganya
- Department of Nuclear Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Goldman
- Department of Nuclear Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fouad Aoun
- Urology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Urology Department, Hôtel Dieu de France, Université Saint Joseph, Beyrouth, Lebanon
| | - Thierry Roumeguère
- Urology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Albisinni
- Urology Department, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
Sillerud LO. Quantitative [Fe]MRI determination of the dynamics of PSMA-targeted SPIONs discriminates among prostate tumor xenografts based on their PSMA expression. J Magn Reson Imaging 2018; 48:469-481. [PMID: 29331081 DOI: 10.1002/jmri.25935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is a need for a quantitative MRI method for iron concentration magnetic resonance imaging suitable for measuring the delivery of targeted superparamagnetic iron oxide nanoparticles (SPIONs) to tumors. PURPOSE To apply our newly developed [Fe]MRI method to the quantitative imaging in both space and time of the iron dynamics of anti-prostate specific membrane antigen (PSMA) conjugated SPIONs within human prostate tumor xenografts in nude mice. STUDY TYPE Longitudinal. ANIMAL MODEL 45 Harlan Sprague Dawley athymic nude mice bearing xenografts from PSMA-positive LNCaP, C4-2 and PSMA-negative DU145 tumors from human prostate tumor cell lines. FIELD STRENGTH/SEQUENCE 1.0 Tesla/ T1 and T2 weighted spin echo. ASSESSMENT Image intensity and contrast measurements. STATISTICAL TESTS Student's t-test. RESULTS The SPION diffusion coefficient within tumors was D = 44.8 ± 2.4 × 10-6 mm2 /s. The iron taken up by PSMA-positive LNCaP and C4-2 tumors was proportional to the tail-vein injected dose from 60 nmol to 1.6 μmol; injection of 1 μmol of iron in anti-PSMA conjugated SPIONs resulted in a tumor [Fe] of 76 μM. Even at the highest iron dose of 1.6 μmol, the PSMA-negative DU145 tumors took up no significant iron from the anti-PSMA conjugated SPIONs. A similar lack of nonspecific uptake was observed when the antibodies against PSMA were omitted from the injected SPION preparation. The fraction of the initial iron dose that was taken up by PSMA-positive tumors was 2.32 ± 0.75% (n = 10); uptake by the PSMA-negative DU145 tumors and for SPIONs without anti-PSMA antibodies was 0.16 ± 0.34% (n = 7) giving a ratio of [Fe] in PSMA + versus PSMA- tumors greater than 15:1 (P = 0.01). DATA CONCLUSION Quantitative [Fe]MRI of anti-PSMA conjugated SPIONs discriminated between PSMA-positive LNCaP and C4-2 and PSMA-negative DU145 human prostate tumor xenografts in vivo. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017. J. MAGN. RESON. IMAGING 2018;48:469-481.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Remião MH, Segatto NV, Pohlmann A, Guterres SS, Seixas FK, Collares T. The Potential of Nanotechnology in Medically Assisted Reproduction. Front Pharmacol 2018; 8:994. [PMID: 29375388 PMCID: PMC5768623 DOI: 10.3389/fphar.2017.00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Reproductive medicine is a field of science which searches for new alternatives not only to help couples achieve pregnancy and preserve fertility, but also to diagnose and treat diseases which can impair the normal operation of the reproductive tract. Assisted reproductive technology (ART) is a set of methodologies applied to cases related to infertility. Despite being highly practiced worldwide, ART presents some challenges, which still require special attention. Nanotechnology, as a tool for reproductive medicine, has been considered to help overcome some of those impairments. Over recent years, nanotechnology approaches applied to reproductive medicine have provided strategies to improve diagnosis and increase specificity and sensitivity. For in vitro embryo production, studies in non-human models have been used to deliver molecules to gametes and embryos. The exploration of nanotechnology for ART would bring great advances. In this way, experiments in non-human models to test the development and safety of new protocols using nanomaterials are very important for informing potential future employment in humans. This paper presents recent developments in nanotechnology regarding impairments still faced by ART: ovary stimulation, multiple pregnancy, and genetic disorders. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed.
Collapse
Affiliation(s)
- Mariana H Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Natalia V Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Pohlmann
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia S Guterres
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana K Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
12
|
In Vivo 3T Magnetic Resonance Imaging Using a Biologically Specific Contrast Agent for Prostate Cancer: A Nude Mouse Model. JOURNAL OF NANOTECHNOLOGY 2017. [DOI: 10.1155/2017/8424686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We characterized in vivo a functional superparamagnetic iron-oxide magnetic resonance contrast agent that shortens the T2 relaxation time in magnetic resonance imaging (MRI) of prostate cancer xenografts. The agent was developed by conjugating Molday ION™ carboxyl-6 (MIC6), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent could be used as a noninvasive method to detect prostate cancer cells that are PSMA positive and more readily differentiate them from surrounding tissues for treatment. The functional contrast agent was injected intravenously into mice and its effect was compared to both MIC6 (without conjugated antibody) and phosphate-buffered saline (PBS) injection controls. MR imaging was performed on a clinical 3T MRI scanner using a multiecho spin echo (MESE) sequence to obtain T2 relaxation time values. Inductively coupled plasma atomic emission spectroscopy was used to confirm an increase in elemental iron in injected mice tumours relative to controls. Histological examination of H&E stained tissues showed normal morphology of the tissues collected.
Collapse
|
13
|
Tafoya MA, Madi S, Sillerud LO. Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: Contrast optimization. J Magn Reson Imaging 2016; 46:574-588. [PMID: 27875002 DOI: 10.1002/jmri.25563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To optimize magnetic resonance imaging (MRI) of antibody-conjugated superparamagnetic nanoparticles for detecting amyloid-β plaques and activated microglia in a 3X transgenic mouse model of Alzheimer's disease. MATERIALS AND METHODS Ten 3X Tg mice were fed either chow or chow containing 100 ppm resveratrol. Four brains, selected from animals injected with either anti-amyloid targeted superparamagnetic iron oxide nanoparticles, or anti-Iba-1-conjugated FePt-nanoparticles, were excised, fixed with formalin, and placed in Fomblin for ex vivo MRI (11.7T) using multislice-multiecho, multiple gradient echo, rapid acquisition with relaxation enhancement, and susceptibility-weighted imaging (SWI). Aβ plaques and areas of neuroinflammation appeared as hypointense regions whose number, location, and Z-score were measured as a function of sequence type and echo time. RESULTS The MR contrast was due to the shortening of the transverse relaxation time of the plaque-adjacent tissue water. A theoretical analysis of this effect showed that the echo time was the primary determinant of plaque contrast and was used to optimize Z-scores. The Z-scores of the detected lesions varied from 21 to 34 as the echo times varied from 4 to 25 msec, with SWI providing the highest Z-score and number of detected lesions. Computation of the entire plaque and activated microglial distributions in 3D showed that resveratrol treatment led to a reduction of ∼24-fold of Aβ plaque density and ∼4-fold in microglial activation. CONCLUSION Optimized MRI of antibody-conjugated superparamagnetic nanoparticles served to reveal the 3D distributions of both Aβ plaques and activated microglia and to measure the effects of drug treatments in this 3X Tg model. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:574-588.
Collapse
Affiliation(s)
- Marissa A Tafoya
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Laurel O Sillerud
- UNM BRaIN Center, Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|