Buelli S, Zoja C, Remuzzi G, Morigi M. Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome.
Microorganisms 2019;
7:microorganisms7010015. [PMID:
30634669 PMCID:
PMC6352217 DOI:
10.3390/microorganisms7010015]
[Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections have become a threat to public health globally because of the severe illnesses that they can trigger, such as hemorrhagic colitis and the post-diarrheal hemolytic uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. Glomerular endothelial cells are primary targets of Stx which, after binding to its specific receptor globotriaosylceramide, upregulates proinflammatory proteins involved both in the recruitment and adhesion of leukocytes and thrombus formation at the site of endothelial injury. In this review, we discuss the role of complement activation in promoting glomerular microvascular dysfunction, providing evidence from experimental models and patients with STEC-HUS. Within the glomerulus, an important target for Stx-induced complement activation is the podocyte, a cell type that is in close contact with endothelial cells and participates in maintaining the filtration barrier. Recently, podocyte injury and loss have been indicated as potential risk factors for long-term renal sequelae in patients with STEC-HUS. Therapeutic approaches targeting the complement system, that may be useful options for patients with STEC-HUS, will also be discussed.
Collapse