1
|
Mallya P, Lewis SA. Curcumin and its formulations for the treatment of polycystic ovary syndrome: current insights and future prospects. J Ovarian Res 2025; 18:78. [PMID: 40234918 DOI: 10.1186/s13048-025-01660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common gynaecological complication with alarmingly high incidence of 6-20% in women of reproductive age and leads to multifaceted symptoms such as menstrual irregularities, hyperandrogenism, polycystic ovaries, and insulin resistance. Several therapeutic methods have been recommended for PCOS including lifestyle modification, insulin sensitizer (metformin), ovulation inducers (letrozole, clomiphene citrate), hormonal pills, and surgical intervention (ovarian drilling and oophorectomy); however, these treatment modalities often cause adverse effects. Currently, phytochemicals and plant extracts have been recommended for PCOS. Among these, few phytochemicals and their formulations, curcumin (CUR) (a bioactive polyphenol from Curcuma longa), has emerged as a promising complementary PCOS therapy due to its antioxidant, anti-inflammatory, insulin-sensitizing, and ovulation inducing properties. However, CUR's clinical application is hindered by poor solubility and bioavailability. In this review, we summarize and discuss various formulations of CUR and combination therapies that have demonstrated potential in treating PCOS in animal models.
Collapse
Affiliation(s)
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Deng H, Chen Y, Xing J, Zhang N, Xu L. Systematic low-grade chronic inflammation and intrinsic mechanisms in polycystic ovary syndrome. Front Immunol 2024; 15:1470283. [PMID: 39749338 PMCID: PMC11693511 DOI: 10.3389/fimmu.2024.1470283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR), steroid hormones imbalance and intestinal microecological imbalance, deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia (HHcy) can induce systematic imbalance between pro-inflammatory and anti-inflammatory cells and molecules. The pro-inflammatory cells and cytokines also interact with obesity, steroid hormones imbalance and IR, leading to increased metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients. This review aims to summarize the dysregulation of immune response in PCOS organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide new insights for the systemic inflammatory treatment of PCOS in the future.
Collapse
Affiliation(s)
- Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jilong Xing
- Division of Renal and Endocrinology, Qin Huang Hospital, Xi’an, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Song Q, Liu J, Li C, Liu R, Zhang N, Shi H. Prognostic value of miR-223 for pregnancy outcomes in patients with in vitro fertilisation and intracytoplasmic sperm injection. J OBSTET GYNAECOL 2024; 44:2368773. [PMID: 38934480 DOI: 10.1080/01443615.2024.2368773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND This study aimed to analyse the expression of microRNA-223 (miR-223) in embryo culture medium and its correlation with pregnancy outcomes. METHODS Two hundred and two patients undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) were divided into clinical pregnancy group (n = 101) and non-pregnant group (n = 101). The baseline data, clinical indicators, and the expression level of miR-223 in the embryo medium were compared between the two groups. Logistic regression analysis was used to analyse the relationship between each index and the pregnancy outcome. Receiver operator characteristic curve was carried out to evaluate the differential ability of miR-223 in pregnancy status. Bioinformatics methods were used to identify the target genes of miR-223 and elucidate their functions. RESULTS Compared with pregnancy group, the non-pregnancy group exhibited a reduction in miR-223 expression (p < 0.001). Multivariate analysis revealed that miR-223 reduction was an independent factor for pregnancy failure (p < 0.05). The ROC curve demonstrated the discriminative capability of miR-223 in distinguishing pregnancy and non-pregnancy. In addition, bioinformatics analysis indicated that the target genes of miR-223 were predominantly located in the endocytic vesicle membrane and were primarily enriched in adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathways. CONCLUSION In this study, levels of miR-223 in the embryo culture medium predicted pregnancy outcomes in subjects undergoing IVF/ICSI. Low expression of miR-223 was a risk factor for adverse pregnancy outcomes in subjects.
Collapse
Affiliation(s)
- Qi Song
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Jiajia Liu
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Chen Li
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Rongrong Liu
- Department of Child Health, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Nan Zhang
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Hongzhi Shi
- Department of Reproductive Medicine, Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
4
|
Lee YZ, Cheng SH, Lin YF, Wu CC, Tsai YC. The Beneficial Effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 in a Letrozole-Induced Polycystic Ovary Syndrome Rat Model. Int J Mol Sci 2024; 25:8706. [PMID: 39201391 PMCID: PMC11354393 DOI: 10.3390/ijms25168706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age globally. Emerging evidence suggests that the dysregulation of microRNAs (miRNAs) and gut dysbiosis are linked to the development of PCOS. In this study, the effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 (DSM 27449) were investigated in a rat model of PCOS induced by letrozole. The administration of DSM 27449 resulted in improved ovarian function, reduced cystic follicles, and lower serum testosterone levels. Alterations in miRNA expressions and increased levels of the pro-apoptotic protein Bax in ovarian tissues were observed in PCOS-like rats. Notably, the administration of DSM 27449 restored the expression of miRNAs, including miR-30a-5p, miR-93-5p, and miR-223-3p, leading to enhanced ovarian function through the downregulation of Bax expressions in ovarian tissues. Additionally, 16S rRNA sequencing showed changes in the gut microbiome composition after letrozole induction. The strong correlation between specific bacterial genera and PCOS-related parameters suggested that the modulation of the gut microbiome by DSM 27449 was associated with the improvement of PCOS symptoms. These findings demonstrate the beneficial effects of DSM 27449 in ameliorating PCOS symptoms in letrozole-induced PCOS-like rats, suggesting that DSM 27449 may serve as a beneficial dietary supplement with the therapeutic potential for alleviating PCOS.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shih-Hsuan Cheng
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
5
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
6
|
Zhao Y, Zhao X, Jiang T, Xi H, Jiang Y, Feng X. A Retrospective Review on Dysregulated Autophagy in Polycystic Ovary Syndrome: From Pathogenesis to Therapeutic Strategies. Horm Metab Res 2024. [PMID: 38565184 DOI: 10.1055/a-2280-7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Jiang
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Xi
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Aaly-Gharibeh Z, Hosseinchi M, Shalizar-Jalali A. Effect of nanocurcumin on fertility in murine model of polycystic ovary syndrome. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:113-117. [PMID: 38465321 PMCID: PMC10924291 DOI: 10.30466/vrf.2023.2006604.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/23/2023] [Indexed: 03/12/2024]
Abstract
The precise pathophysiology of polycystic ovary syndrome (PCOS) is not well-founded. In an attempt to fill this gap, the current study was executed to probe the effect of nanocurcumin (NCC) on ovarian tissue, in vitro fertilization (IVF) and pre-implantation embryo development in a mouse model of PCOS. Fifty adult female mice were randomly categorized into five equal groups including non-treated control and PCOS (receiving 0.20 mg estradiol valerate (EV) intra-peritoneally once a day for 21 days) as well as NCC12.50 + PCOS, NCC25 + PCOS and NCC50 + PCOS (receiving respectively 12.50, 25.00 and 50.00 mg kg-1 NCC daily along with EV injection through oral gavages for 21 days) groups. Subsequently, ovarian histo-architecture and total anti-oxidant capacity, and malonaldehyde and catalase levels as well as in vitro fertilizing potential, early embryonic development and serum testosterone concentration were analyzed. Results showed that NCC in a dose-dependent manner improved ovarian cyto-architectural organization and oxidant/anti-oxidant balance along with IVF rate and pre-implantation embryo development in PCOS mice. These findings revealed that NCC at the doses of 25.00 and 50.00 mg kg-1 could alleviate PCOS-linked reproductive disruptions in female mice.
Collapse
Affiliation(s)
- Zahra Aaly-Gharibeh
- DVMGraduate, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran;
| | - Mohammadreza Hosseinchi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran;
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
8
|
Hu W, Xie N, Pan M, Zhang Q, Zhang H, Wang F, Qu F. Chinese herbal medicine alleviates autophagy and apoptosis in ovarian granulosa cells induced by testosterone through PI3K/AKT1/FOXO1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117025. [PMID: 37567425 DOI: 10.1016/j.jep.2023.117025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common gynecological endocrine and metabolic disorder. Chinese herbal medicine has some advantages in the treatment of PCOS with its unique theoretical system and rich clinical practice experiences. AIM OF THE STUDY The present study was to investigate the potential mechanisms of Bu-Shen-Jian-Pi Formula (BSJPF) on the treatment of PCOS. MATERIAL AND METHODS The combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) rapid analysis, network pharmacology, molecular docking analysis and bio-experiments were firstly conducted to identify the main effective components of BSJPF, and to predict the potential mechanisms. The ovarian granulosa cell line (KGN) was treated with testosterone to construct the PCOS model in vitro, and the cells were further treated with the lyophilized powder of BSJPF. The levels of proliferation, autophagy and apoptosis were detected to explore the mechanisms of BSJPF on treating PCOS. RESULTS Firstly, thirty-six active compounds were identified in BSJPF and thirty-one potential targets on PCOS were found. Then, PI3K and PDK1 were verified to have good binding activity with the active compounds through molecular docking analysis. In bio-experiments, BSJPF significantly alleviated the arrested proliferation of KGN cells in G0/G1 phase and reduced the active levels of autophagy and apoptosis of KGN cells induced by testosterone. Additionally, the inhibition of autophagy diminished apoptosis, while the repression apoptosis enhanced autophagy. Finally, BSJPF significantly decreased the FOXO1 expression levels induced by testosterone, especially for nuclear FOXO1, and significantly activated the PI3K/AKT pathway. CONCLUSIONS BSJPF significantly alleviated the activated autophagy and apoptosis in KGN induced by testosterone through PI3K/AKT1/FOXO1pathway, which is an effective treatment for PCOS.
Collapse
Affiliation(s)
- Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Manman Pan
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Hui Zhang
- Zhejiang Vocational College of Special Education, Hangzhou, 310023, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Jung W, Choi H, Kim J, Kim J, Kim W, Nurkolis F, Kim B. Effects of natural products on polycystic ovary syndrome: From traditional medicine to modern drug discovery. Heliyon 2023; 9:e20889. [PMID: 37867816 PMCID: PMC10589870 DOI: 10.1016/j.heliyon.2023.e20889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder with a worldwide prevalence of 6-10 % of women of reproductive age. PCOS is a risk factor for cardiometabolic disorders such as type 2 diabetes, myocardial infarction, and stroke in addition to exhibiting signs of hyperandrogenism and anovulation. However, there is no known cure for PCOS, and medications have only ever been used symptomatically, with a variety of adverse effects. Drugs made from natural plant products may help treat PCOS because several plant extracts have been widely recognized to lessen the symptoms of PCOS. In light of this, 72 current studies on natural products with the potential to control PCOS were examined. By controlling the PI3K/AKT signaling pathway and decreasing NF-κB and cytokines such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and interleukin-6 (IL-6), certain plant-derived chemicals might reduce inflammation. Other substances altered the HPO axis, which normalized hormones. Additionally, other plant components increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels to reduce radiation-induced oxidative stress. The other substances prevented autophagy by impairing beclin 1, autophagy-related 5 (ATG5), and microtubule-associated protein 1A/1B-light chain 3 - II (LC3- II). The main focus of this comprehensive review is the possibility of plant extracts as natural bio-resources of PCOS treatment by regulating inflammation, hormones, reactive oxygen species (ROS), or autophagy.
Collapse
Affiliation(s)
- Woobin Jung
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyojoo Choi
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jimin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jeongwoo Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Woojin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Indonesia
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
10
|
Akter T, Zahan MS, Nawal N, Rahman MH, Tanjum TN, Arafat KI, Moni A, Islam MN, Uddin MJ. Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises. Heliyon 2023; 9:e16957. [PMID: 37346347 PMCID: PMC10279838 DOI: 10.1016/j.heliyon.2023.e16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/24/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common hormonal disorder among women (4%-20%) when the ovaries create abnormally high levels of androgens, the male sex hormones that are typically present in women in trace amounts. The primary characteristics of PCOS include oxidative stress, inflammation, hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance. Generally, metformin, spironolactone, eflornithine and oral contraceptives are used to treat PCOS, despite their several side effects. Therefore, finding a potential candidate for treating PCOS is necessary. Curcumin is a major active natural polyphenolic compound derived from turmeric (Curcuma longa). A substantial number of studies have shown that curcumin has anti-inflammatory, anti-oxidative stress, antibacterial, and anti-apoptotic activities. In addition, curcumin reduces hyperglycemia, hyperlipidemia, hyperandrogenism, and insulin resistance in various conditions, including PCOS. The review highlighted the therapeutic aspects of curcumin against the pathophysiology of PCOS. We also offer a hypothesis to improve the development of medicines based on curcumin against PCOS.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | | | - Nafisa Nawal
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | | | | | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | - Mohammad Nazrul Islam
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| |
Collapse
|
11
|
Racz CP, Racz LZ, Floare CG, Tomoaia G, Horovitz O, Riga S, Kacso I, Borodi G, Sarkozi M, Mocanu A, Roman C, Tomoaia-Cotisel M. Curcumin and whey protein concentrate binding: Thermodynamic and structural approach. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Osman MAA, Alkhouly M, Elmohaseb GF, Nassef EM, Mohamed IGR, El mancy IM, Sabry S, Abdulrehim MM, Eliwa A, Eisa YH, Abdel-Ghany A, Abdelghani Y. Relation Between Non-Alcoholic Fatty Pancreas and Clinical and Biochemical Parameters in Women with Polycystic Ovary Syndrome: A Multi-Centric Study. Int J Gen Med 2022; 15:8225-8233. [PMID: 36438020 PMCID: PMC9682932 DOI: 10.2147/ijgm.s384073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinological disease affecting women in the reproductive age. Non-alcoholic fatty pancreas disease (NAFPD) can promote many aspects of pancreatic dysfunction. The present study aimed to determine the prevalence of NAFPD and to identify its association with clinical and biochemical parameters in PCOS patients. METHODS The present study included 150 patients with PCOS and 150 age-matched healthy controls. All patients were submitted to careful history taking and thorough clinical examination. Performed laboratory investigations included fasting and postprandial blood glucose, lipid profile, liver function tests, serum prolactin and total testosterone. Fatty pancreas was diagnosed using abdominal ultrasound. RESULTS Among PCOS women, NAFPD was diagnosed in 57 women (38.0%) in contrast to 18 women (12.0%) in the control group (p < 0.001). Patients with NAFPD were significantly older [median (IQR): 38.0 (35.0-43.0) versus 29.0 (25.5-33.0) years, p = 0.001] with higher BMI [median (IQR): 31.5 (29.1-34.7) versus 30.4 (28.6-32.4) kg/m2, 0.042]. Moreover, they had significantly higher frequency of metabolic syndrome (84.2% versus 54.8%, p = 0.001), insulin resistance (68.4% versus 26.9%, p < 0.001) and severe NAFLD (22.8% versus 2.2%, p < 0.001). NAFPD patients had significantly lower sex hormone binding globulin (SHBG) [median (IQR): 36.0 (30.8-40.7) versus 38.1 (35.15-42.7), p = 0.002] and significantly higher free androgen index (FAI) [median (IQR): 4.08 (3.3-4.92) versus 3.47 (3.12-4.05), p < 0.001]. CONCLUSION NAFPD is prevalent PCOS. It is related to metabolic syndrome, insulin resistance, dyslipidemia and hyperandrogenism.
Collapse
Affiliation(s)
- Mustafa A A Osman
- Gynecology and Obstetrics Department, Al-Azhar University, Cairo, Egypt
| | - Mohamed Alkhouly
- Gynecology and Obstetrics Department, Al-Azhar University, Cairo, Egypt
| | | | | | | | | | - Seham Sabry
- Internal Medicine Department, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed Eliwa
- Internal Medicine Department, Al-Azhar University, Cairo, Egypt
| | - Yasmine H Eisa
- Community Medicine Department, October 6 University, Giza, Egypt
| | - Ahmed Abdel-Ghany
- Gynecology and Obstetrics Department, Minia University, Minia, Egypt
| | | |
Collapse
|
13
|
Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
The Mitigatory Effect of Shen-Qi Compound on the Diabetic Thoracic Aortic Complications through Inhibiting the Inflammatory Microenvironment by miR-223-3p/RBP-J/IRF8 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6686931. [PMID: 36212957 PMCID: PMC9534610 DOI: 10.1155/2022/6686931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
Background Disruption of the vascular immunological inflammatory microenvironment is linked to metabolic memory impairment. Even though it has been proven that the Shen-Qi compound (SQC) can efficiently halt metabolic memory and preserve vascular endothelial cells, extensive studies need to be done to investigate if it can also change the vascular immune-inflammatory microenvironment by regulating the immune system. This will help figure out the role of stopping metabolic memory. Methods After 4 weeks on a high-fat diet (HFD), GK rats were used to create a model for diabetic thoracic aortic problems. The effect and mechanisms of SQC on diabetic thoracic aortic complications were assessed by hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), biochemical analysis, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription, real-time polymerase chain reaction (RT-qPCR), immunofluorescence (IF), western blot, and luciferase reporter assays. Results SQC treatment ameliorates the HFD-induced pathological symptoms as well as the HFD-induced increased concentrations of fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) and decreased concentrations of high-density lipoprotein cholesterol (HDL-C). Besides, SQC counteracted the HFD-induced average fluorescence intensity of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), as well as the concentrations of endothelin-1 (ET-1) and monocyte chemoattractant protein-1 (MCP-1), while rescuing the HFD-induced concentrations of nitric oxide (NO) and nitric oxide synthetase (NOS). Also, SQC decreases apoptosis and oxidative stress in rats with diabetic thoracic aortic complications. In addition, SQC facilitated the polarization of macrophages, stimulated the activation of dendritic cells, and regulated the inflammatory milieu in rats with diabetic thoracic aortic complications. Furthermore, SQC also modulated the miR-223-3p/RBP-J/IRF8 axis in the macrophages of rats with diabetic thoracic aortic complications. Conclusion SQC ameliorated diabetic thoracic aortic complications through the regulation of apoptosis, oxidative stress, and inflammatory microenvironment mediating by the miR-223-3p/RBP-J/IRF8 axis.
Collapse
|
15
|
Xiong H, Hu Q, Jiang Q. Protective effects of lidocaine on polycystic ovary syndrome through modulating ovarian granulosa cell physiology via PI3K/AKT/mTOR pathway. Cytotechnology 2022; 74:283-292. [PMID: 35464164 PMCID: PMC8975917 DOI: 10.1007/s10616-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/10/2022] [Indexed: 11/03/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine condition in women that causes adverse reproductive and metabolic effects. PCOS is a heterogeneous disorder and its pathogenesis is affected by different factors. Thus, the criteria for diagnosing PCOS, disease and availability of treatment options vary widely across different countries. Lidocaine has been proven to inhibit the proliferation of a variety of cancer cell types, and can be used alone or in combination with other drugs for the treatment of numerous types of disease. The present study aimed to determine whether lidocaine was able to reduce human ovarian granulosa cell tumor cell line KGN cell proliferation and provide a novel insight into potential therapeutic strategies for PCOS. KGN cells were treated alone with lidocaine at different concentrations, or with lidocaine and insulin-like growth factor-1 (IGF-1; a phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT) signaling pathway agonist) in combination for 48 h. The proliferative ability of KGN cells was detected using an 3-(45)-dimethylthiahiazo (-z-y1)-35-di- phenytetrazoliumromide (MTT) assay, and cell apoptosis was detected using flow cytometry. The expression levels of proteins and mRNAs were measured using western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. The results of the present study revealed that lidocaine significantly suppressed KGN cell proliferation and increased apoptosis. Lidocaine significantly downregulated the protein expression levels of phosphorylated (p)-AKT and p-mTOR, but had no effect on their transcriptional levels. Treatment with IGF-1, could reverse the lidocaine-induced abnormal expression of PI3K/AKT signaling pathway-related proteins. Moreover, treatment with IGF-1 could reverse all the effects of lidocaine on KGN cells. In conclusion, the findings of the present study indicated that lidocaine may inhibit KGN cell proliferation and induce apoptosis by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway. These results revealed the potential inhibitory effect of lidocaine on the proliferation of KGN cells and its underlying mechanism of action, providing a novel insight into potential therapeutic strategies for PCOS.
Collapse
|
16
|
Li X, Liao M, Shao J, Li W, Shi L, Wang D, Ni J, Shen Q, Yang F, Peng G, Zhou L, Zhang Y, Sun Z, Zheng H, Long M. Plasma Diaphanous Related Formin 1 Levels Are Associated with Altered Glucose Metabolism and Insulin Resistance in Patients with Polycystic Ovary Syndrome: A Case Control Study. Mediators Inflamm 2022; 2022:9620423. [PMID: 35185386 PMCID: PMC8856793 DOI: 10.1155/2022/9620423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diaphanous related formin 1 (DIAPH1) is a novel component of advanced glycation end product (AGE) signal transduction that was recently found to participate in diabetes-related disorders, obesity, and androgen hormones. We investigated whether plasma DIAPH1 levels were a potential prognostic predictor for polycystic ovary syndrome (PCOS). METHODS The levels of circulating plasma DIAPH1 and indicators of glucose, insulin, lipid metabolism, liver enzymes, kidney function, sex hormones, and inflammation were measured in 75 patients with PCOS and 77 healthy participants. All of the participants were divided into normal-weight (NW) and overweight/obese (OW) subgroups. Statistical analyses were performed with R studio. RESULTS PCOS patients manifested hyperandrogenism, increased luteinizing hormone/follicle-stimulating hormone (LH/FSH), and accumulated body fat and insulin resistance. Plasma DIAPH1 levels were significantly decreased in women with PCOS compared to control participants, and DIAPH1 levels were distinctly reduced in OW PCOS compared to OW control subjects (P < 0.001). DIAPH1 levels correlated with fasting blood glucose (FBG), total cholesterol (TC), the homeostasis model assessment of β-cell function (HOMA-β), and LH/FSH in all participants (FBG: r = 0.351, P < 0.0001; TC: r = 0.178, P = 0.029; HOMA-β: r = -0.211, P = 0.009; LH/FSH: r = -0.172, P = 0.040). Multivariate logistic regression analysis revealed that plasma DIAPH1 levels were an independent risk factor for PCOS. A model containing DIAPH1, BMI, FBG, and testosterone was constructed to predict the risk of PCOS, with a sensitivity of 92.0% and a specificity of 80.9%. A nomogram was constructed to facilitate clinical diagnosis. CONCLUSIONS These findings suggest the association of plasma DIAPH1 with glucose metabolism, insulin resistance, and sex hormones and support DIAPH1 as a potential predictive factor for PCOS.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Weixin Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liu Shi
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Wang
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Ni
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiuyue Shen
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guiliang Peng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuling Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Chen H, Fu Y, Guo Z, Zhou X. MicroRNA-29c-3p participates in insulin function to modulate polycystic ovary syndrome via targeting Forkhead box O 3. Bioengineered 2022; 13:4361-4371. [PMID: 35142592 PMCID: PMC8973910 DOI: 10.1080/21655979.2022.2033014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are gene expression regulators and changes in miRNA levels are associated with diabetes, insulin resistance, and inflammation, the latter two of which are characteristic of polycystic ovary syndrome (PCOS). The purpose of this study was to explore the specific mechanism in which miR-29 c-3p participated in insulin function to regulate PCOS by targeting Forkhead box O 3 (Foxo3). Peripheral blood from PCOS patients and healthy volunteers were first collected, and the expression levels of miR-29 c-3p and Foxo3 were detected by reverse transcription quantitative polymerase chain reaction or Western blot. Then human granular tumor cell line (KGN) was treated with insulin, and transfected with plasmid vectors interfering with miR-29 c-3p or Foxo3 expression. Cell proliferation was detected by Cell counting kit-8 and plate cloning, and cell apoptosis was tested by flow cytometry. In addition, PCOS rat model was established. PCOS rats were injected with plasmids vectors interfering with miR-29 c-3p or Foxo3 expression, respectively. Pathological changes in ovarian tissues of rats in each group were observed by hematoxylin-eosin staining, and serum sex hormones and glucose metabolism-related indicators were detected. Finally, via bioinformatics website, luciferase digestion report assay was detected the targeting relationship between miR-29 c-3p and Foxo3. The experimental results showed that miR-29 c-3p was down-regulated in PCOS, but Foxo3 was up-regulated. Up-regulated miR-29 c-3p or down-regulated Foxo3 promoted KGN cell proliferation, inhibited apoptosis in vitro, restored PCOS rat sex hormone levels and improved glucose metabolism in vivo. These results suggest that miR-29 c-3p is involved in insulin function to improve PCOS by targeting Foxo3.
Collapse
Affiliation(s)
- HongXia Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - YunFeng Fu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - ZiXiang Guo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - XiaoDong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Elakkad YE, Mohamed SNS, Abuelezz NZ. Potentiating the Cytotoxic Activity of a Novel Simvastatin-Loaded Cubosome against Breast Cancer Cells: Insights on Dual Cell Death via Ferroptosis and Apoptosis. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:675-689. [PMID: 34934357 PMCID: PMC8684378 DOI: 10.2147/bctt.s336712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Female breast cancer is the most prevalent cancer worldwide. Emerging evidence shows that simvastatin (SIM) has promising anticancer activities. However, the underlying mechanisms are not fully elucidated. Increasing reports imply statins can modulate ferroptosis through disrupting reactive oxygen species (ROS) and glutathione peroxidase enzyme (GPX4) levels. However, whether ferroptosis contributes to SIM anticancer activity, especially regarding GPX4 is unclear. Moreover, poor aqueous SIM solubility hinders its delivery in adequate levels to tumor sites. Meanwhile, cubosomes are biocompatible nanocarriers that enhance lipophilic drug delivery. Therefore, in this study, we formulated a novel SIM-loaded cubosome (SIM-CB) and analyzed its cytotoxic activity on MCF-7 cancer cells in comparison with free SIM. METHODS The present study tested the cytotoxic activity of SIM-CB on MCF-7 cells, in comparison with SIM using sulphorhodamine assay. We analyzed SIM-CB effect on apoptosis and cell cycle using flowcytometry, and investigated its effect on Bcl-2, caspase 3, ROS, reduced glutathione (GSH), lipid peroxides and GPX4 enzyme. Finally, we tested the persistence of SIM-CB apoptosis and ferroptosis activities on MCF-7 cells in presence of vitamin E, a potent antioxidant and ferroptosis inhibitor. RESULTS SIM-CB was successfully formulated at the nano size. SIM-CB significantly increased simvastatin therapeutic activity, with IC50 of SIM-CB 52% lower than SIM. 95% CI [1.8, 2.7], SD = 0.34 for SIM-CB, and [4.1, 5.2], SD = 0.45 for SIM. Compared with free SIM, SIM-CB doubled total deaths and increased apoptosis (p < 0.05). Moreover, SIM-CB remarkably increased caspase-3, ROS, and lipid peroxide levels but decreased antiapoptotic Bcl-2 protein, GSH, and GPX4 compared with free SIM. Notably, SIM-CB elicited a high distinguished resistance against the inhibitory effects of vitamin E. CONCLUSION To the best of our knowledge, this study is the first to present SIM-CB as a promising means to enhancing the therapeutic potential of simvastatin against breast cancer cells, through potentiating both apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Yara E Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Shimaa Nabil Senousy Mohamed
- Biochemistry Division, Chemistry Department, Center of Basic Sciences, Misr University for Science and Technology, Giza, Egypt
| | - Nermeen Z Abuelezz
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|