1
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
2
|
Riaz R, Parveen S, Shafiq N, Ali A, Rashid M. Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Mol Divers 2024:10.1007/s11030-024-10897-7. [PMID: 39012565 DOI: 10.1007/s11030-024-10897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Fagonia indica from Zygophyllaceae family is a medicinal specie with significant antidiabetic potential. The present study aimed to investigate the in vitro antidiabetic activity of Fagonia indica crude extract followed by an in silico screening of its phytoconstituents. For this purpose, crude extract of Fagonia indica was prepared and divided in three different parts, i.e., n-hexane, ethyl acetate, and methanolic fraction. Based on in vitro outcomes, the phytochemical substances of Fagonia indica were virtually screened through a literature survey and a screening library of compounds (1-13) was prepared. The clinical potential of these novel drug candidates was assessed by applying an ADME screening profile. Findings of SwissADME indicators (Absorption, Distribution, Metabolism, and Excretion) for the compounds (1-13) presented relatively optimal physicochemical characteristics, drug-likeness, and medicinal chemistry. The antidiabetic action of these leading drug candidates was optimized through molecular docking analysis against 3 different human pancreatic α-amylase macromolecular targets with (PDB ID 1B2Y), (PDB ID 3BAJ), and (PDB ID: 3OLI) by applying Virtual Docker (Molegro MVD). Metformin was taken as a reference standard for the sake of comparison. In vitro antidiabetic evaluation gave good results with promising α-amylase inhibitory action in the form of IC50 values, as for n-hexane extract = 206.3 µM, ethyl acetate = 41.64 µM, and methanolic extract = 9.61 µM. According to in silico outcomes, all 13 phytoconstituents possess the best binding affinity with successful MolDock scores ranging from - 97.2003 to - 65.6877 kcal/mol and show a great number of binding interactions than native drug metformin. Therefore, the current work concluded that the diabetic inhibition prospective of extract and the compounds of Fagonia indica may contribute to being investigated as a new class of antidiabetic drug or drug-like candidate for further studies.
Collapse
Affiliation(s)
- Rabia Riaz
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan.
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 2300, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Riaz R, Parveen S, Shafiq N, Ali A, Rashid M. Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Mol Divers 2024. [DOI: https:/doi.org/10.1007/s11030-024-10897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 01/06/2025]
|
4
|
Kumar V, Sharma A, Sharma N, Saini R, Dev K, El-Shazly M, Bari ABA. A review of botany, traditional applications, phytochemistry, pharmacological applications, and toxicology of Rubus ellipticus Smith fruits. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4483-4497. [PMID: 38252298 DOI: 10.1007/s00210-024-02964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Rubus ellipticus Smith. (Family Rosaceae), often known as the yellow Himalayan raspberry (Yellow Hissar), is one of the most widely used edible fruits in Indian folk medicinal systems. The current review aims to identify the gap between research and existing applications of this fruit to help scientists explore the current trends and opportunities for future development. Fruits of R. ellipticus are the source of several classes of compounds. Fruits of R. ellipticus are also rich in nutrients such as carbohydrates, vitamins, and minerals. It has been shown to have significant medical value in a variety of studies, including as an anti-diabetic, nephroprotective, anti-inflammatory, analgesic, antipyretic, antitumor, wound healing, antifertility, oviposition deterrent, antibacterial, and antioxidant. Fruits of R. ellipticus have been the subject of several in vitro and in vivo investigations, all of which have corroborated their wide range of biological activities and demonstrated their potential for the identification of new therapeutic candidates and the development of innovative herbal food supplements. Additional mechanism-based pharmacological evaluation and clinical research should provide an adequate scientific basis for the traditional usage of R. ellipticus fruits, which is currently not sufficiently supported by the available research on its active components and molecular mechanisms.
Collapse
Affiliation(s)
- Vikas Kumar
- University Institute of Bioengineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - Ankita Sharma
- University Institute of Bioengineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140307, India
| | - Rakshandha Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, 173229, HP, India
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 4543, USA
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Ahamed Basha Abdul Bari
- Department of Physiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
5
|
Shrivastava AK, Keshari M, Neupane M, Chaudhary S, Dhakal PK, Shrestha L, Palikhey A, Yadav CK, Lamichhane G, Shekh MU, Yadav RK. Evaluation of Antioxidant and Anti-Inflammatory Activities, and Metabolite Profiling of Selected Medicinal Plants of Nepal. J Trop Med 2023; 2023:6641018. [PMID: 37954133 PMCID: PMC10637841 DOI: 10.1155/2023/6641018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
This study aimed to evaluate the antioxidant, antiarthritic, and anti-inflammatory properties of extracts from the leaves of twelve different medicinal plants in Nepal. We then evaluated the total phenolic, flavonoid, and tannin contents of the extract using in-vitro assays and characterized it using GC-MS analysis. Results revealed that most of the leaf extracts contained phenolic compounds, flavonoids, tannins, alkaloids, and saponins. Few plants also showed the presence of glycosides, phytate, and vitamin C. Among the studied plants, Neolamarckia cadamba exhibited the highest total phenolic and tannin contents, as 241.53 ± 0.20 µg of gallic acid equivalent/mg and 74.48 ± 1.081 µg of tannic acid equivalent/mg, respectively. Ipomoea batatas exhibited the highest total flavonoid content, as 53.051 ± 1.11 µg of quercetin equivalent/mg. Moreover, Raphanus sativus demonstrated significant ferrous ion chelating, 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide scavenging, and total antioxidant activities with IC50 value of 4.76 ± 0.68 µg/mL, 5.84 ± 0.14 µg/mL, 6.89 ± 0.16 µg/mL, and 8.99 ± 0.20 µg/mL, respectively. Similarly, Colocasia esculenta and Cicer arietinum exhibited the highest hydroxyl radical and nitric oxide scavenging activities, measuring IC50 value of 7.22 ± 0.56 µg/mL and 9.06 ± 0.10 µg/mL, respectively. Among all the extracts, Amorphophallus paeoniifolius displayed significant human red blood cell (HRBC) membrane stabilization activity (IC50 = 6.22 ± 0.78 µg/mL). Furthermore, Raphanus sativus, Chenopodium album, Cicer arietinum, and Murraya koenigii exhibited the highest inhibitory activities against protein denaturation with bovine serum albumin, antiarthritic, lipoxygenase inhibitory, and proteinase inhibitory, measuring IC50 of 7.48 ± 0.48 µg/mL, 9.44 ± 1.62 µg/mL, 14.67 ± 1.94 µg/mL, and 28.57 ± 2.39 µg/mL, respectively. In conclusion, this study demonstrated the twelve leaf extracts' significant antioxidant, antiarthritic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Muskan Keshari
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Manisha Neupane
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Sheshbhan Chaudhary
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Purna Kala Dhakal
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Laxmi Shrestha
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Anjan Palikhey
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Chandrajeet Kumar Yadav
- Department of Pharmacology, Universal College of Medical Sciences, Bhairahawa, Rupandehi 32900, Nepal
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohammad Ujair Shekh
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski, Nepal
| | - Rakesh Kumar Yadav
- Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa, Rupandehi, Nepal
| |
Collapse
|
6
|
Lamichhane A, Lamichhane G, Devkota HP. Yellow Himalayan Raspberry ( Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules 2023; 28:6071. [PMID: 37630323 PMCID: PMC10458938 DOI: 10.3390/molecules28166071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Yellow Himalayan raspberry (Rubus ellipticus Sm., Rosaceae) is a native species of the Indian subcontinent, Southern China, and the Philippines, which has been historically used as a traditional medicine and food. All of the parts of this plant have been used in traditional medicine to treat respiratory ailments, diabetes, and gastrointestinal disorder, and as an anti-infective agent. The scientific evaluation revealed a richness of macronutrients, micronutrients, and minerals in the fruits, indicating its potential use as a nutraceutical. Furthermore, this plant has been found to be rich in various secondary metabolites, including polyphenols, flavonoids, anthocyanins, tannins, and terpenoids. Ascorbic acid, kaempferol, gallic acid, and catechin are some of the compounds found in this plant, which have been widely discussed for their health benefits. Furthermore, various extracts and compounds obtained from R. ellipticus have shown antioxidant, antidiabetic, anticancer, anti-inflammatory, nephroprotective, antipyretic, anticonvulsant, and anti-infective activities investigated through different study models. These findings in the literature have validated some of the widespread uses of the fruits in folk medicinal systems and the consumption of this nutritious wild fruit by local communities. In conclusion, R. ellipticus holds strong potential for its development as a nutraceutical. It can also improve the nutritional status of villagers and uplift the economy if properly utilized and marketed.
Collapse
Affiliation(s)
- Ananda Lamichhane
- Collage of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
7
|
Nicoletti M. The Antioxidant Activity of Mistletoes ( Viscum album and Other Species). PLANTS (BASEL, SWITZERLAND) 2023; 12:2707. [PMID: 37514321 PMCID: PMC10384781 DOI: 10.3390/plants12142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In addition to the European mistletoe, Viscum album, which is the most known and utilized one, there are several species commonly known as mistletoe. They are spread in various regions of the planet and are all characterized by hemiparasitism and epiphytic behaviour. The published studies evidence other similarities, including the sharing of important biological properties, with the common presence of antioxidant effects. However, whereas the European mistletoe is largely utilized in medical treatments, although with controversial aspects, the scientific knowledge and medical uses of other mistletoes are still insufficient. This review focuses on the controversial medical story of European mistletoe regarding its antioxidant activity and the potentiality of the other species named mistletoe pertaining to botanical families and genera different from Viscum.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Foundation in Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Damergi B, Essid R, Fares N, Khadraoui N, Ageitos L, Ben Alaya A, Gharbi D, Abid I, Rashed Alothman M, Limam F, Rodríguez J, Jiménez C, Tabbene O. Datura stramonium Flowers as a Potential Natural Resource of Bioactive Molecules: Identification of Anti-Inflammatory Agents and Molecular Docking Analysis. Molecules 2023; 28:5195. [PMID: 37446858 DOI: 10.3390/molecules28135195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
The present study investigated the antioxidant, antibacterial, antiviral and anti-inflammatory activities of different aerial parts (flowers, leaves and seeds) of Datura stramonium. The plant material was extracted with 80% methanol for about 24 h. The sensitivity to microorganisms analysis was performed by the microdilution technique. Antioxidant tests were performed by scavenging the DPPH and ABTS radicals, and by FRAP assay. Anti-inflammatory activity was evaluated through the inhibition of nitric oxide production in activated macrophage RAW 264.7 cells. Cell viability was assessed with an MTT assay. Results show that the flower extract revealed a powerful antimicrobial capacity against Gram-positive bacteria and strong antioxidant and anti-inflammatory activities. No significant cytotoxicity to activated macrophages was recorded. High resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analysis identified two molecules with important anti-inflammatory effects: 12α-hydroxydaturametelin B and daturametelin B. Molecular docking analysis with both pro-inflammatory agents tumor necrosis factor alpha and interleukin-6 revealed that both compounds showed good binding features with the selected target proteins. Our results suggest that D. stramonium flower is a promising source of compounds with potential antioxidant, antibacterial, and anti-inflammatory activities. Isolated withanolide steroidal lactones from D. stramonium flower extract with promising anti-inflammatory activity have therapeutic potential against inflammatory disorders.
Collapse
Affiliation(s)
- Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Lucía Ageitos
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Ameni Ben Alaya
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Jaime Rodríguez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Carlos Jiménez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|